共查询到2条相似文献,搜索用时 0 毫秒
1.
Anthropogenic impacts on nitrogen fixation rates between restored and natural Mediterranean salt marshes 下载免费PDF全文
To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta‐ and Spartina townsendii‐vegetated sediments from three restored (6–14 years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 μmol C2H4·m?2·h?1 among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site‐specific impacts of anthropogenic stress on marsh succession. 相似文献
2.
Alexander S. Kolker Steven L. Goodbred Jr. Sultan Hameed J. Kirk Cochran 《Estuarine, Coastal and Shelf Science》2009,84(4):493-508
While it is well known that coastal systems respond to long-term sea-level changes, the importance of short-term sea-level dynamics is often overlooked. Year-to-year variability in annual mean sea level along the North American Atlantic coast is part of a regionally consistent pattern that is coupled to low atmospheric pressure and high wind field anomalies persisting over 100s to 1000s of km. These short-term sea-level dynamics, along with long-term sea-level changes are shown to be closely coupled to a set of high resolution excess 210Pb geochronologies from four physiographically distinct salt marsh estuaries surrounding Long Island, NY, USA. However, the degree to which a marsh responds to either forcing depends on its physiographic setting. Accretion and mineral deposition rates in marshes situated in embayments with long fetches and low-tidal ranges are shown to respond most to the short-term dynamically driven changes in sea level. On the other hand, accretion and mineral deposition in a marsh in an embayment with a high-tidal range and reduced fetch best track the long-term changes in mean sea level, presumably because the physiography limited the meteorological drivers of short-term sea-level change. The close coupling between marsh accretion, physiographic setting and indices of sea-level change indicates that these coastal system respond both differently and rapidly (2–5 yr) to climate variability. 相似文献