首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to study the temporal dynamics of rhizome epiphytes and sessile animals living on the rhizomes of the seagrass Posidonia oceanica in the east of Tunisia. Surveys were conducted in October 2009, and in January, April and August 2010 on a fringing reef located in Chebba. Rhizomes were sampled by SCUBA diving at three stations. Samples were examined with a microscope to estimate the cover of macroinvertebrate and macroalgal organisms on the top 10 cm of each rhizome. Results revealed a high diversity of epiphytes on P. oceanica rhizomes with a dominance of red and brown algae, ascidians, and bryozoans. Distinct temporal changes were observed in Oued Lafrann, with a high January cover (winter period) for all groups. These winter increases can be attributed to: (i) the low phenological parameters of P. oceanica in winter that reduce the effects of shading, (ii) life cycles of the epiphytes and invertebrates, (iii) water motion and (iv) grazing.  相似文献   

2.
The aim of this survey was to study the cover and the composition of macroepiphytic species on the leaves of Posidonia oceanica in the east of Tunisia. Surveys were conducted in December 2009 (winter period), March (spring period) and August 2010 (summer period) in a fringing reef located in Chebba. At each sampling date, 15 adult leaves were randomly collected and divided into basal and apical parts. The inner face of each part was examined with ocular glasses and microscope to estimate species cover by orthogonal projection. PERMANOVA and ANOSIM were used to test for differences of cover between sampling dates and leaf parts. SIMPER, cluster analysis, and PCA were used to ordinate species assemblages. Comparison of epiphytic cover along leaf blades showed significant differences for all groups, except cyanophycea, with high cover of hydrozoans and bryozoans in the basal part and high cover of algae in the apical part. The species composition and cover also vary with sampling date; minimum values were detected in December and the epiphytic community was composed of a few pioneer species, whereas maximum epiphytic cover values were registered in August, with the epiphytic community being composed of a more mature and more diverse community, termed ‘climax’. The main regulatory factors for this distribution are discussed.  相似文献   

3.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors (e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats (Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness.  相似文献   

4.
The aim of this research was to study spatial and temporal variation in epiphyte cover and leaf biomass of Posidonia oceanica in Eastern Tunisia. Sampling was conducted at four stations on the Mahdia coast during October and December 2010, and April and August 2011, which correspond respectively to autumn, winter, spring and summer in this area. Posidonia oceanica shoots were collected at two depths (5 and 10 m). Cover of macroinvertebrates and macroalgae was estimated on adult leaves. The results showed that leaf and epiphyte biomasses vary significantly according to sampling date, with the highest values recorded in August. We found a high diversity of epiphytic assemblages on the leaves of P. oceanica with clear qualitative and quantitative dominance of Rhodophyceae compared to other groups, followed by Phaeophyceae. Most epiphyte species on the leaves of P. oceanica in Eastern Tunisia are the same as those in other parts of the Mediterranean Sea. No bathymetrical variation in the epiphytic community was found in our study area, which can be explained by the high levels of water clarity in Mahdia.  相似文献   

5.
A study was undertaken of the patterns of spatial variability, epiphytic biomass and distribution of epiphytic fauna and flora of Posidonia oceanica. Samples were taken at four stations located approximately 4 km apart, exposed to different current conditions. Stations A and B, situated near the Oued Mimoun tidal channel with its relatively strong bi‐directional flows, were affected by high current tide. The other two stations, North Oued Mimoun (L1) and South Oued Mimoun (L2), were located further from the channel, in low current tide conditions. Sampling was conducted in the Attaya area of Kerkennah Island (Tunisia) in August 2009 at depths between 2 and 3 m, with the results indicating differences among the stations. Shoot density decreased when exposed to high levels of hydrodynamic activity generated by current tides whereas the epiphytic biomass of P. oceanica leaves decreased at sheltered stations located far from the channel. Epiphytic algae such as Heterokontophyta, Rhodophyta and Chlorophyta, and epiphytic fauna represented by Bryozoa, Hydrozoa, Annelida, Porifera and Tunicata, dominated the epiphytic assemblages and were abundant at the station most exposed to high current tide hydrodynamics. Cyanobacteria, however, were dominant in stations exposed to low current tide.  相似文献   

6.
It has recently been realized that sponges take up much of the dissolved organic matter (DOM) available in the water of reefs. The energy derived from this DOM is suggested to be invested in renewing the sponge filter cells (choanocytes) every few hours, generating an outflow of detrital particulate organic matter (POM) that is rapidly ingested by other invertebrates. By this DOM‐to‐POM recycling, sponges are proposed to fuel the food web of oligotrophic marine communities, including reefs, caves and deep‐sea environments. In four species studied herein by electron microscopy, the POM found in the outgoing aquiferous canals had a complex composition, with large between‐species differences. It may include choanocytes (0–52%), and also mesohyl cells, such as archeocytes (9–20%) and spherulous, and granular cells with inclusions (27–90%). Exocytosed vesicles also occurred. Surprisingly, to end up into the outgoing canals, the internal mesohyl cells squeezed between the epithelial cells (endopinacocytes) of the canal wall. Mesohyl cells were also able to transfer their inclusions to the endopinacocytes, which in turn extruded their acquired vesicle loads into the canal lumen. The unanticipated abundant participation of mesohyl cells and endopinacocytes in the production of POM appears to be an ordinary process that occurs continuously in the sponges, mostly related to elimination of digestion leftovers and excretion by‐products. Therefore, POM is generated by sponges irrespective of whether the primary food source is particulate (evidence from this study) or DOM (previous literature). Altogether, these results indicate that the cellular mechanisms behind the relevant organic‐matter recycling carried out by sponges are more diverse than initially anticipated. The varying ratios of choanocytes/mesohyl cells in the POM across species suggest that different sponge species may impact differently the energetics of food webs of the respective oligotrophic habitats where they dominate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号