首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triassic platform-margin deltas in the western Barents Sea   总被引:1,自引:0,他引:1  
The Early to Middle Triassic in the Barents Sea was dominated by prograding transgressive-regressive sequences. Internal clinoform geometries indicate that sediments were derived from the Baltic Shield in the south and the Uralian Mountains in the east and southeast. These systems were formed in a large, relatively shallow epicontinental basin, where modest variations in relative sea-level relocated the shoreline significantly. This study shows the development of strike elongated depositional wedges that thicken just basinward of the platform-edge. Seismic facies and time-thickness maps show the position and development of platform-margin delta complexes within each sequence. Seismic clinoforms and trajectory analysis show significant lateral variation from the axis of the delta complex to areas adjacent to the main delivery system. Frequent toplap geometries are observed in proximity to coarse-grained deposits, while aggradation of seismic clinoforms characterizes areas laterally to the platform-margin deltas. Complex shifts in depocenters are revealed by large-scale compensational stacking pattern and relict platform breaks. Locally, relict breaks are created due to pre-existing paleo-topography. Platform-margin deltas can be identified by careful mapping of clinoform geometries, clinoform angles and trajectories. However, seismic analysis of prograding clinoform units indicate that the shoreline and delta complexes commonly are positioned landward of the platform-edge. Deposition of platform-margin deltas is sometimes caused by locally increased sediment supply during slightly rising relative sea-level, and occasionally caused by a regional drop in relative sea-level with significant shelf bypass.Development, position, thickness and facies distribution of platform deltas and platform-margin deltas of very broad low-relief basins, like the Triassic of the epicontinental Barents Sea basin, are strongly sensitive to changes in relative sea-level due to rapid emergence and submergence of wide areas, and to changes in position of major rivers supplying sand to the delta systems. In this respect, the depositional model of the present study deviates from models of clinoform successions obtained from small and narrow basins or siliciclastic platforms with high coarse-clastic sediment supply.  相似文献   

2.
To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences. Margin setting represents fan and/or source area  相似文献   

3.
A regional correlation of Neogene stratigraphy has been attempted along and across the NW European Atlantic continental margin, between Mid-Norway and SW Ireland. Two unconformity-bounded successions are recognised. These are referred to as the lower and upper Neogene successions, and have been dated as Miocene–early Pliocene and early Pliocene–Holocene, respectively, in age. Their development is interpreted to reflect plate-wide, tectonically driven changes in the sedimentary, oceanographic and latterly climatic evolution of the NE Atlantic region. The lower Neogene succession mainly preserves a record of deep-water sedimentation that indicates an expansion of contourite sediment drifts above submarine unconformities, within this succession, on both sides of the eastern Greenland–Scotland Ridge from the mid-Miocene. This is interpreted to record enhanced deep-water exchange through the Faroe Conduit (deepest part of the Southern Gateway), and can be linked to compressive inversion of the Wyville–Thomson Ridge Complex. Thus, a pervasive, interconnected Arctic–North Atlantic deep-water circulation system is a Neogene phenomenon. The upper Neogene succession records a regional change, at about 4 Ma, in the patterns of contourite sedimentation (submarine erosion, new depocentres) coeval with the onset of rapid seaward-progradation of the continental margin by up to 100 km. This build-out of the shelf and slope is inferred to record a marked increase in sediment supply in response to uplift and tilting of the continental margin. Associated changes in deep-water circulation may be part of an Atlantic-wide reorganisation of ocean bottom currents. Glacial sediments form a major component of the prograding shelf margin (shelf-slope) sediment wedges, but stratigraphic data indicate that the onset of progradation pre-dates significant high-latitude glaciation by at least 1 Ma, and expansive Northern Hemisphere glaciation by at least 3 Ma.  相似文献   

4.
To help understand factors that influence submarine fan deposition, we outline some of the principal sedimentary, tectonic, and sea-level controls involved in deep-water sedimentation, give some data on the rates at which they operate, and evaluate their probable effects. Three depositional end-member systems, two submarine fan types (elongate and radial), and a third nonfan, slope-apron system result primarily from variations in sediment type and supply. Tectonic setting and local and global sea-level changes further modify the nature of fan growth, the distribution of facies, and the resulting vertical stratigraphic sequences.  相似文献   

5.
The Early Miocene was a period of active rifting and carbonate platform development in the Midyan Peninsula, NW Saudi Arabia. However, there is no published literature available dealing with the detailed characterization of the different carbonate platforms in this study area. Therefore, this study aims to present new stratigraphic architectural models that illustrate the formation of different carbonate platforms in the region and the forcing mechanisms that likely drove their formation. This study identified the following features formed during active rifting: a) a Late Aquitanian (N4) fault-block hangingwall dipslope carbonate ramp, b) a Late Burdigalian (N7-N8) isolated normal fault-controlled carbonate platform with associated slope deposits, and c) a Late Burdigalian (N7-N8) attached fault-bounded platform with reef buildups, rimmed shelf developed on a footwall fault-tip within a basin margin structural relay zone that formed coinciding with the second stage of rifting. Variations in cyclicity have been observed within the internal stratigraphic architecture of each platform and also between platforms. High-resolution sequence stratigraphic analysis shows to be parasequences the smallest depositional packages (metre-scale cycles) within the platforms. The hangingwall dipslope carbonate ramp and the attached platform demonstrate aggradational-progradational parasequence stacking patterns. These locations appear to have been more sensitive to eustatic cyclicities, despite the active tectonic setting. The isolated, fault-controlled carbonate platform reveals disorganized stratal geometries in both platform-top and slope facies, suggesting a more complex interplay of rates of tectonic uplift and subsidence, variation in carbonate productivity, and resedimentation of carbonates, such that any sea-level cyclicity is obscure. This study explores the interplay between different forcing mechanisms in the evolution of carbonate platforms in active extensional tectonic regions. Characterization of detailed parasequence-scale internal architecture allows the spatial variation in syn-depositional relative base-level changes to be inferred and is critical for understanding the development of rift basin carbonate platforms. Such concepts may be useful for the prediction of subsurface facies relationships beyond interwell areas in hydrocarbon exploration and reservoir modeling activities.  相似文献   

6.
The ˜4000 m thick and ∼20 Myr deep-water sedimentary fill of the Upper Cretaceous Magallanes Basin was deposited in three major phases, each with contrasting stratigraphic architecture: (1) the oldest deep-water formation (Punta Barrosa Formation) comprises tabular to slightly lenticular packages of interbedded sandy turbidites, slurry-flow deposits, and siltstone that are interpreted to record lobe deposition in an unconfined to weakly ponded setting; (2) the overlying, 2500 m thick and shale-dominated Cerro Toro Formation includes a succession of stacked conglomeratic and sandstone channel-fill deposits with associated finer-grained overbank deposits interpreted to record deposition in a foredeep-axial channel-levee system; (3) the final phase of deep-water sedimentation is characterized by sandstone-rich successions of highly variable thickness and cross-sectional geometry and mudstone-rich mass transport deposits (MTDs) that are interpreted to record deposition at the base-of-slope and lower slope segments of a prograding delta-fed slope system. The deep-water formations are capped by shallow-marine and deltaic deposits of the Dorotea Formation.These architectural changes are associated with the combined influences of tectonically driven changes and intrinsic evolution, including: (1) the variability of amount and type of source material, (2) variations in basin shape through time, and (3) evolution of the fill as a function of prograding systems filling the deep-water accommodation. While the expression of these controls in the stratigraphic architecture of other deep-water successions might differ in detail, the controls themselves are common to all deep-water basins. Information about source material and basin shape is contained within the detrital record and, when integrated and analyzed within the context of stratigraphic patterns, attains a more robust linkage of processes to products than stratigraphic characterization alone.  相似文献   

7.
The North Atlantic margins are archetypally passive, yet they have experienced post-rift vertical movements of up to kilometre scale. The Cenozoic history of such movements along the NW European margin, from Ireland to mid-Norway, is examined by integrating published analyses of uplift and subsidence with higher resolution tectono-stratigraphic indicators of relative movements (including results from the STRATAGEM project). Three episodes of epeirogenic movement are identified, in the early, mid- and late Cenozoic, distinct from at least one phase of compressive tectonism. Two forms of epeirogenic movement are recognised, referred to as tilting (coeval subsidence and uplift, rotations <1° over distances of 100s of Kilometres) and sagging (strongly differential subsidence, rotations up to 4° over distances <100 km). Each epeirogenic episode involved relatively rapid (<10 Ma) km-scale tectonic movements that drove major changes in patterns of sedimentation to find expression in regional unconformity-bounded stratigraphic units. Early Cenozoic tilting (late Paleocene to early Eocene, c. 60–50 Ma) caused the basinward progradation of shelf-slope wedges from elongate uplifts along the inner continental margin and from offshore highs. Mid-Cenozoic sagging (late Eocene to early Oligocene, c. 35–25 Ma) ended wedge progradation and caused the onset of contourite deposition in deep-water basins. Late Cenozoic tilting (early Pliocene to present, <4±0.5 Ma) again caused the basinward progradation of shelf-slope wedges, from uplifts along the inner margin (including broad dome-like features) and from offshore highs. The early, mid- and late Cenozoic epeirogenic episodes coincided with Atlantic plate reorganisations, but the observed km-scale tectonic movements are too large to be accounted for as flexural deflections due to intra-plate stress variations. Mantle–lithosphere interactions are implied, but the succession of epeirogenic episodes, of differing form, are difficult to reconcile with the various syn-to post-rift mechanisms of permanent and/or transient movements proposed in the hypothetical context of a plume beneath Iceland. The epeirogenic movements can be explained as dynamic topographic responses to changing forms of small-scale convective flow in the upper mantle: tilting as coeval upwelling and downwelling above an edge-driven convection cell, sagging as a loss of dynamic support above a former upwelling. The inferred Cenozoic succession of epeirogenic tilting, sagging and tilting is proposed to record the episodic evolution of upper mantle convection during ocean opening, a process that may also be the underlying cause of plate reorganisations. The postulated episodes of flow reorganisation in the NE Atlantic region have testable implications for epeirogenic movements along the adjacent oceanic spreading ridge and conjugate continental margin, as well as on other Atlantic-type ‘passive’ margins.  相似文献   

8.
The sequence stratigraphic architecture includes a complex array of stratal geometries with different degrees of stratigraphic significance. The ‘non-unique’ variability of the sequence stratigraphic framework (i.e., stratal geometries which are not diagnostic for the definition of systems tracts and bounding surfaces) is irrelevant to the workflow of sequence stratigraphy. What is relevant is the observation of the ‘unique’ stratal geometries that are diagnostic for the definition of units and surfaces of sequence stratigraphy. In downstream-controlled settings, these unique stratal stacking patterns relate to the forced regressive, normal regressive, and transgressive shoreline trajectories. Multiple controls interact during the formation of each type of stacking pattern, including accommodation, sediment supply, and the energy of the sediment-transport agents. This interplay explains the non-unique variability, but does not change the unique criteria that afford a consistent application of sequence stratigraphy. The distinction between unique and non-unique stratal geometries is critical to the sequence stratigraphic methodology. Failure to rationalize the non-unique variability within the context of unique stratal geometries is counterproductive, and obscures the simple workflow of sequence stratigraphy. This is the case with uncalibrated numerical modeling, which may overemphasize non-unique or even unrealistic stratigraphic scenarios. While useful to test the possible controls on stratigraphic architecture, modeling requires validation with real data, and plays no role in the sequence stratigraphic methodology.  相似文献   

9.
Five depositional bodies occur within the Quaternary deposits of the northwestern Alboran Sea: Guadalmedina-Guadalhorce prodelta, shelf-edge wedges, progradational packages, Guadiaro channel-levee complex, and debris flow deposits. The sedimentary structure reflects two styles of margin growth characterized: 1) by an essentially sediment-starved outer, shelf and upper slope and by divergent slope seismic facies; 2) by a prograding sediment outer shelf, and parallel slope seismic facies. Eustatic oscillations, sediment supply, and tectonic tilting have controlled the type of growth pattern, and the occurrence of the depositional bodies. Debris flows were also controlled locally by diapirism.  相似文献   

10.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

11.
During late Pliocene to Pleistocene times, prominent prograding wedges were deposited along the continental margin of NW Europe, resulting in seaward shelf break migration of up to 150 km. Much of the sediment accumulation occurred marginal to the former mid- to high-latitude ice sheets. The geographical distribution, and stratigraphical and chronological data may suggest that the instigation of the wedges was variously related to tectonic uplift as well as a response to the late Pliocene to Pleistocene climate deterioration and onset of major northern hemisphere glaciations. The onset of wedge growth on the NW UK and Irish margins was initiated at about 4 Ma in response to tectonic tilting of the margin in that region. However, glacially derived sediments here comprise a significant proportion of the wedges, especially since 0.44 Ma. For the Faroe margin, no detailed chronology is available; however, it may be inferred that onset of glacigenic wedge growth here did not post-date that observed on the NW UK and Irish margins. Offshore Norway, wedge growth has largely occurred since ca. 2.7 Ma in response to northern hemisphere glaciations, also recording a major change in sediments transport routes at 0.8–1.1 Ma (reflecting larger Fennoscandian Ice Sheets). Presently, it is uncertain whether the glacigenic wedge growth was preceded by a fluvial phase (in response to uplift) in this area. In the western Barents Sea, an early phase of wedge growth was (glacio) fluvial in character. Off western Spitsbergen, the development was similar to that of the Barents Sea although the glacigenic wedge-growth phase may have started somewhat earlier.The wedges commonly display gently inclined seaward prograding clinoforms, and transparent to chaotic internal acoustic facies. Sampling of their sediments reveals that they are mainly composed of glacigenic diamicton interbedded with marine and glaciomarine sediments that, to various extents, have been affected by bottom-current action. The clinoforms of these wedges vary in geometry from oblique to sigmoidal, and they also show varying degrees of aggradation throughout their development. The resulting stratal stacking pattern can be attributed to a combination of variations in sediment supply, sedimentary processes, and accommodation space, the latter being a function of tectonic movements and/or loading induced subsidence as well as eustatic sea-level fluctuations.  相似文献   

12.
 Major variations in type and rate of tectonic movement in the southwestern margin of the Ulleung Basin coincide in time with changes in stratal patterns at succession boundaries, suggesting that the effect of tectonism was dominant for the development of sequence architecture. During the back-arc opening (16–12 Ma), the rise of relative sea level and the high rate of sediment supply gave rise to sequences with sigmoid progradational patterns. During the back-arc closing (12–6.5 Ma), fall- and rise-dominated relative sea-level fluctuations resulted in sequences with varying stratal patterns depending upon changes in deposition rate. The rise-dominated relative sea level has been prevalent during the later stage (6.5 Ma–Present) with low sedimentation rate. Received: 16 January 1996 / Revision received: 7 February 1997  相似文献   

13.
Stratigraphic grade is the similarity of the morphology of successive slope-to-basin profiles in a genetically related depositional system. In this article we use data collected from regional cross-sections of six depositional systems, stratal architecture derived from outcrops of the Lewis Shale (Wyoming, USA), and the Ross Sandstone (Ireland), and supplementary outcrop and subsurface data from other depositional systems to determine how stratigraphic grade relates to stratal (reservoir) architecture in deepwater systems.Four methods are developed that collectively define stratigraphic grade: (1) regional stacking patterns of fourth-order stratigraphic surfaces, (2) the relationship between the trajectory of the shelf edge (Tse) and the trajectory of the depocenter (Td) for fourth-order stratigraphic units, (3) morphology of the slope-to-basin profiles of fourth-order stratigraphic surfaces, and (4) the similarity of the morphologies of slope-to-basin profiles of fourth-order surfaces in a system (σs, σr). Several characteristics of stratigraphic (reservoir) architecture of fourth-order stratigraphic cycles are related to stratigraphic grade: (1) longitudinal distribution of sandstone in fourth-order cycles, (2) location of maximum sandstone relative to the depocenter of fourth-order cycles, (3) lengths of fourth-order submarine fans, and (4) longitudinal and vertical distribution of architectural elements. Stratigraphic grade is thus a predictor of reservoir architecture and can thereby be used to reduce the uncertainty in the interpretation of subsurface data.The concept of stratigraphic grade is useful in understanding the stratigraphic evolution of deepwater systems. Most deepwater systems analyzed in this study initiated as out-of-grade and temporally evolved to graded systems over a time span of millions of years. Systems rarely evolve from graded to out-of-grade. First-order controls on stratigraphic grade are determined to be angle of slope, tectonically forced changes in angle of slope during deposition, and sediment supply.  相似文献   

14.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls. In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts, and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised. This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma.  相似文献   

15.
G Ercilla  B Alonso  J Baraza 《Marine Geology》1994,120(3-4):249-265
The post-Calabrian sedimentary column of the northwestern Alboran Sea comprises three depositional sequences. The two older depositional sequences are defined by lowstand systems tracts (shelf-margin deltas, slope, base-of-slope, and basin deposits, and the Guadiaro channel-levee complex). In contrast, the most recent depositional sequence also includes transgressive (relict shelf facies) and high-stand (the Guadalmedina-Guadalhorce prodelta and hemipelagic facies) systems tracts. The stratigraphic architecture of these depositional sequences is controlled by the synchronism between high frequency sea-level changes, variations in sediment supply, and sedimentary processes. The configuration of the depositional sequences is variable and their distribution is complex, as a result of the relative importance played by sea-level changes and tectonism through the area.

The sequence boundaries are represented by polygenetic surfaces in the proximal margin, and by monogenetic surfaces in the distal margin and basin. Each polygenetic surface results from the interaction between the sequence boundary with the lowstand erosional truncation surface and the transgressive surface, both developed during the previous sea-level cycle. The monogenetic surfaces correspond to unconformities and their correlative conformities, formed during sea-level lowstands. This pattern of depositional sequences developed in the margin and basin of the northwestern Alboran Sea shows differences with the Exxon Sequence Stratigraphy Model as traditionally applied: sea-level change control is essentially recognized through lowstand systems tracts, and sequence boundary coincides with lowstand erosional truncation surface and transgressive surface, both developed during the previous sea-level cycle.  相似文献   


16.
The siliciclastic Gadvan Formation from Abadan Plain, southwestern Iran, is highly bioturbated and allows relationships between changes in ichnocoenoses within a depositional system to be documented and placed in a high-resolution sequence stratigraphic framework. Relying on the sedimentary and ichnological characteristics, the siliciclastic succession is divided into two facies associations: a wave-dominated offshore-shoreface complex and a tide-river influenced delta. The first includes facies that have been deposited in shelf-offshore, upper offshore, lower shoreface and upper/middle shoreface environments, the latter includes facies that have been deposited in prodelta and delta front. Integrated ichnologic and sedimentologic studies of the Gadvan Formation, allow distinction between prodelta and delta front and open marine deposits. With the identification of maximum flooding and ravinement surfaces as bounding surfaces of the stratal units, detailed analysis on systematic changes in the stacking pattern (cycle thickness, cycle type, and facies proportion) are made. Eight ichnocoenoses could be differentiated in the studied sections. The positions of the ichnocoenoses within genetically related stratal units (genetically related ichnocoenoses), indicate three large-scale cycles (DS1 to DS3, from oldest to youngest). The cyclical nature of the Gadvan Formation is attributed to low-amplitude eustasy in greenhouse conditions formed under interaction of eustatic high-frequency cycles and longer term tectonically driven sea-level variations during the long-term transgressive sea-level trend of the early Cretaceous. Stratigraphic architectural style of sequences DS1 to DS3 (which includes scarce evidence of lowstand deposits, partial or total truncation of the HST, and predominance of thick transgressive deposits), is remarkably similar to long-term transgressive sea-level trend of the Early Cretaceous across the Arabian Plate. This study suggests a more relatively seaward position of the siliciclastic successions of the Gadvan Formation of Abadan Plain than the Mesopotamian Basin (upper Zubair Formation equivalent in western Iraq and Kuwait), which would be concordant with the prevailing view of an easterly prograding coastline across the Arabian Plate.This study reveals important sedimentological and ichnological features and permits the development of predictive models for the paleoenvironmental and sequence stratigraphical significance of trace fossil assemblages that can be readily compared or translated to analogous depositional systems worldwide. The ichnological analysis is based on cores and can be especially applied to evaluate the applicability of current ichnological models to the study of Cretaceous reservoirs of western Iraq, Kuwait and western Saudi Arabia.  相似文献   

17.
The late Pleistocene–Holocene stratigraphic architecture on the steep and narrow shelf off Nha Trang, central Vietnam has been explored by high resolution seismic profiles integrated with sediment core data. Sequence stratigraphic results reveal five major seismic units and three bounding surfaces which are composed of two distinctive sequences. Those sequences are bounded by two regional unconformities (SB1, SB2) which have been formed in respond to different sea-level regimes. The revealed relict beach–ridge deposits at water depth of about ∼130 m below the present water depth indicate that the Last Glacial Lowstand (LGM) sea-level in this area was lower than in neighboring areas and it probably resulted from subsidence due to high sedimentation rate and/or neotectonic movements of the East Vietnam Fault System. The late Pleistocene high amplitude of sea-level change during a long fourth-order and superimposed by shorter fifth-order cycle is the principal factor in reorganizing the formation of the Nha Trang continental shelf sequence. Other local controlling factors as fluctuations in sediment supply, morphological variations of the LGM surface, subsidence rate and hydrodynamic conditions provided the distinctive features of the Nha Trang shelf sequence stratigraphic model in comparison with neighboring other areas.  相似文献   

18.
According to widely accepted sequence stratigraphic and fill-and-spill models, sedimentary cyclicity along continental margins is modulated by relative sea-level change, whereas smaller-scale intraslope accommodation is controlled by the filling of pre-existing bathymetric depressions. Although these concepts are presumed to apply to shelf-to-slope settings regardless of grain size, we have tested both hypotheses in the mud-prone lower Pliocene to Holocene of offshore Louisiana, Gulf of Mexico, and reach different conclusions. We determine that over the last ∼3.7 Myr, differential accumulation and accompanying salt tectonism dislocated the fine-grained shelf and slope, prevented the development of sedimentary reciprocity at 10–100 kyr time scales, and inhibited fill-and-spill accumulation. We show that only 3% of “lowstand” mass transport deposits can be correlated to low stands in relative sea level, whereas approximately 30% of the deposits are related to transgressions and high stands; the remaining 67% are poorly constrained. Mass transport deposits also show no clear evidence of up-section increases in bypass. Based on our results, we conclude that the dominant control on stratigraphic architecture in offshore Louisiana was not relative sea-level change or patterns of accommodation, but rather differential deposition and concomitant salt-related subsidence, which controlled the distribution of facies, timing and location of mass transport deposits, and rates of sediment accumulation. Our conclusions highlight the importance of sediment supply and local tectonism, and caution against a priori use of conventional sequence stratigraphic and fill-and-spill models to decipher the stratigraphic evolution of actively-deforming mud-dominated continental margins. We therefore recommend treating stratigraphic models as testable hypotheses, rather than as methods of interpretation, particularly in fine-grained areas devoid of well-developed depositional sequences and in settings lacking intraslope ponded-to-perched accumulations.  相似文献   

19.
20.
Quantifying the geometries of evaporite deposits at a <1 km scale is critical in our understanding of similar ancient depositional systems, but is challenging given evaporite mineral dissolution at surface conditions. A high-resolution stratigraphic study of the basal Purbeck Beds in Brightling Mine, UK, provides insight into the three-dimensional architecture, lateral continuity and vertical heterogeneity within an evaporite seal. We conducted a field mapping study, combined with X-ray diffraction, petrographic microscopy, and δ13C and δ18O isotope analysis. The stratigraphic interval contains five facies. In stratigraphic order, these include supratidal porphyritic nodular evaporite, shallow subtidal peloidal packstone with evaporite and two overlying rhythmic sequences of intertidal microbial laminite, subtidal shale, and subtidal laminar marl, capped by nodular anhydrite. The interpreted environment of deposition is a supratidal sabkha subject to periodic flooding in which intertidal (tidal flat) facies and subtidal (shallow marine) facies laterally passed into the evaporative sabkha. The cycles are interpreted as meter-scale shoaling-upward sequences, likely controlled by localized high-frequency changes in relative sea level and/or sabkha hydrology. Spatial patterns in the geometries of key stratigraphic surfaces reveal a subtle depression towards the central western region of the mine seam. The variation in stratal geometries is interpreted as paleotopography and is a function of individual or composite processes related to dissolution, eolian processes, and coastal erosion. These observations indicate a similar mode of deposition to the modern-day sabkha of the Persian Gulf. We conclude that the dynamic process of evaporite deposition led to subtle stratigraphic heterogeneities and changes in bed thicknesses, but largely continuous lateral bedding at an interwell-scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号