首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

2.
大河口潮滩地貌动力过程的研究-- 以长江口为例   总被引:1,自引:0,他引:1  
该文阐述河口潮滩的发育依赖于河流泥沙来源、河口动力和海底地形诸方面的有利条件.长江口潮滩在世界大河三角洲潮滩发育中独具特色.大河口潮滩的平面形态有“长条状”、“裙状”、“沙咀状”和“江心洲”型,横剖面形态有“宽缓型”、“陡岸型”和“侵蚀崖型”.主河道两侧潮滩水流基本上是往复流,但岛屿面向外海一侧的潮滩是旋转流.潮滩近底流速随着高程的增大而减小.虽然潮汐始终是潮滩水动力的控制因子,但径流起着加强落潮流和改变流速不对称性的作用.潮滩上的波能随风力、水深、滩坡和植被状况而变化.长江口潮滩水体属高浑浊水体,悬沙浓度变化于每升几百毫克至每升几万毫克之间.在总体迅速淤涨的背景下,大河口潮滩存在不同时间尺度的冲淤循环.  相似文献   

3.
Changes in channel morphology provide relevant insights into sediment transport and deposition in alluvial river systems. This study assessed three to four decades of morphological changes at seven locations along a 327-km reach of the Lower Mississippi River (LMR) to better understand channel adjustment processes of this large alluvial river. The assessment included analysis of three cross-sectional areas at each location during the period 1992–2013, as well as analysis of the changes in river stage and maximum surface slopes under four flow conditions over the last three to four decades . We found that the first 20–25 km LMR reach below its diversion to the Atchafalaya River and the reach from 80 to 140 km experienced significant riverbed aggradation, while the reach in between (i.e. from 20 to 80 km) experienced riverbed degradation. The lower 187-km reach (i.e. from 140 to 327 km) showed negligible sediment trapping. These findings may have relevant implications for management of river sediment diversions along the LMR and other large alluvial rivers in the world.  相似文献   

4.
Confluence dynamics in the Ganga–Ramganga valley in the western Ganga plains of India has been studied through systematic mapping of channel configuration using multi-date remote sensing images and topographic sheets for a period spanning nearly 100 years (1911–2000). The study has been supplemented with a detailed analysis of the channel morphology, hydrology and sediment transport characteristics of the different rivers. Our study indicates that new confluences have been created during this period and that the confluence points have moved both upstream and downstream on a historical time scale. Apart from major avulsions, other processes that have controlled the confluence movements include river capture, cut-offs and aggradation in the confluence area. River capture occurs through lateral bank erosion and migration, encroachment by the master stream and beheading of smaller rivers resulting in upstream movement of the confluence point. Another process which influences the upstream migration of the confluence is an increase in sinuosity of one of the channels near the confluence and then a cut-off. Aggradation in the confluence area and local avulsions of the primary channel in a multi-channel system seem to be the major process controlling the downstream movement of the confluence point. Analysis of channel morphology, hydrology and sediment budget for the study period supports our interpretations.  相似文献   

5.
为揭示三峡水库库区不同类型支流河口泥沙淤积的内在机理和变化趋势,本文充分利用水文、泥沙、固定断面和河道地形等原型观测资料,从支流水沙输移规律和河口局部水沙分布特征出发,研究了不同类型支流河口段泥沙淤积规律及主要影响因素的作用机理,探讨其淤积趋势及形成拦门沙的风险。结果表明:三峡水库蓄水后,库区不同类型支流河口普遍淤积,淤积范围及河道形态的变化各有特点;水库蓄水造成水动力条件减弱是河口泥沙淤积的根本原因,淤积幅度和范围主要取决于干支流来沙量和局部河势。在干支流来沙均明显减少的情况下,三峡水库库区支流河口泥沙淤积速度显著下降,形成拦门沙坎的可能性较小。  相似文献   

6.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   

7.
Acoustic profiling in combination with coring has been used to examine the recent evolution of river mouth of the Changjiang. Two acoustic facies are present. Petrologic, radiometric and seismic analyses show that the upper facies I of 10–20 m thick fine sand and silt represents the sandy shoals of late Holocene age in the distributary, and the 5–20 m thick lower facies II of fine-grained silty clay with abundant marine microfossils represents the mid-Holocene prodelta facies deposited as fillings in the former large estuarine valley of late Pleistocene to early Holocene origin. Rapid accumulation during the Holocene has led to some instability of unconsolidated sedimentary strata in the distributary, such as strata collapse and mud diaper formation. The existence of large cross beddings, such as tabular and trough stratification in facies I identifies the sediment transport as predominantly bed load, driven by runoff and tidal currents. Two sets of discrete flood-ebb flow troughs, oriented NW and SE reflect controls by tidal waves generated from the sea and the superimposition of runoff and ebb flows. Symmetrical sand waves that appear at the northern trough of one of the distributaries also indicate the balancing sediment dynamics between runoff-ebb and flood currents, whereas the asymmetrical ones in the southern trough indicate superimposed sedimentation by runoff and ebb flows. A large quantity of sediment has been deposited in the slack water region between the discrete flood and ebb flows to form sandy shoals — the principal mechanism of the evolution of estuarine islands in the Holocene Changjiang mouth. The morphology of the extended river mouth to the southeast possibly indicates an external driving force, such as the Coriolis Effect, NW-prevailing wind and longshore currents.  相似文献   

8.
黄河河口延伸与下游淤积关系研究中的问题分析   总被引:1,自引:5,他引:1  
师长兴 《地理科学》2005,25(2):183-189
阐明了黄河河口延伸与下游淤积关系问题的实质,指出了黄河河口延伸与下游淤积关系对时间尺度的依赖性,进而深入探讨了以前研究这一问题所用论据的合理性题。分析结果揭示,那种认为黄河下游淤积由河口延伸控制和河口延伸作用局限于近口河段的说法都缺乏令人信服的证据。  相似文献   

9.
赣江入湖三角洲上的网状河流体系研究   总被引:6,自引:0,他引:6  
王随继 《地理科学》2002,22(2):202-207
中国南方的冲积河流有许多属于分汊河流,这已被许多研究者进行过比较深入的分析研究,但赣江在其入湖三角洲上的多河道体系与分汊河道有着明显的不同,它的形成是河流自发调整的结果,而不象分汊河流那样由节点控制。它具有网状河流所具有的地貌和沉积物特征,属于典型的网状河流体系。虽然是低含沙河流,但由于其水动力较弱及汛期基准面的上升,洪泛频繁,可输入河间地以大量的泥沙并在低能环境中发生沉积,使河道及河间地能够协调加积升高,并维持多河道体系的稳定性。  相似文献   

10.
利用 1998年和2013年历史水下地形数据,结合2015年和2016年多波束测深、流速与河床沉积物数据,探讨了南京段河槽演变对人类活动的响应规律。结果表明:1998~2013年南京河段整体呈现冲刷状态,净冲刷量为0.56亿 m3 南京段主河槽发育有平床和沙波等微地貌,两侧发育有水下陡坡。其中,平床和小尺度沙波区域平均流速为0.79 m/s,而巨型沙波区域平均流速为1.41 m/s。人类活动对该河段的水下微地貌演变与河势演变起到至关重要的作用。由于三峡大坝等人类活动的影响,上游来沙量仍将持续低于多年平均值,南京段河槽会进一步冲刷并极可能给涉水工程安全带来威胁。  相似文献   

11.
The Tianjiazhen reach of the middle Yangtze is about 8 km long, and characterized by a narrow river width of 650 m and local water depth of > 90 m in deep inner troughs, of which about 60 m is below the mean sea level. The troughs in the channel of such a large river are associated with regional tectonics and local lithology. The channel configuration plays a critical role in modifying the height and duration of river floods and erosion of the riverbed. The formation of the troughs in the bed of the Yangtze is considered to be controlled by sets of NW–SE-oriented neotectonic fault zones, in which some segments consist of highly folded thick Triassic limestone crossed by the Yangtze River. Several limestone hills, currently located next to the river channel, serve as nodes that create large vortices in the river, thereby accelerating downcutting on the riverbed composed of limestone highly susceptible to physical corrosion and chemical dissolution. Hydrological records indicate that the nodal hills and channel configuration at Tianjiazhen do not impact on normal flow discharges but discharges > 50,000 m3s− 1 are slowed down for 2–3 days. Catastrophic floods are held up for even longer periods. These inevitably result in elevated flood stages upstream of prolonged duration, affecting large cities such as Wuhan and a very large number of people.  相似文献   

12.
R.M. Joeckel  G.M. Henebry   《Geomorphology》2008,102(3-4):407-418
The lower Platte River has undergone considerable change in channel and bar characteristics since the mid-1850s in four 20–25 km-long study stretches. The same net effect of historical channel shrinkage that was detected upstream from Grand Island, Nebraska, can also be detected in the lower river but differences in the behaviors of study stretches upstream and downstream from major tributaries are striking. The least relative decrease occurred downstream from the Loup River confluence, and the stretch downstream from the Elkhorn River confluence actually showed an increase in channel area during the 1940s. Bank erosion was also greater downstream of the tributaries between ca. 1860 and 1938/1941, particularly in stretch RG, which showed more lateral migration. The cumulative island area and the ratio of island area to channel area relative to the 1938/1941 baseline data showed comparatively great fluctuations in median island size in both downstream stretches. The erratic behavior of island size distributions over time indicates that large islands were accreted to the banks at different times, and that some small, newly-stabilized islands were episodically “flushed” out of the system. In the upstream stretches the stabilization of mobile bars to create new, small islands had a more consistent impact over time. Channel decrease by the abandonment of large, long-lived anabranches and by the in-place narrowing resulting from island accretion were more prominent in these upstream stretches. Across all of the study area, channel area appears to be stabilizing gradually as the rate of decrease lessens. This trend began earliest in stretch RG in the late 1950s and was accompanied by shifts in the size distributions of stabilized islands in that stretch into the 1960s. Elsewhere, even in the easternmost study stretch, stabilizing was occurring by the late 1960s, the same time frame documented by investigations of the Platte system upstream of the study area. Comprehensive management plans for the lower Platte River should account, at least in theory, for the observed differences in stream behavior upstream and downstream of the major eastern tributaries.  相似文献   

13.
黄河三角洲岸线及现行河口区水下地形演变   总被引:2,自引:0,他引:2  
根据实测的岸线和水深数据,利用Surfer 和Mapinfo 等软件进行数据处理,结合不同阶段利津站输沙量,分析了黄河三角洲岸线及现行河口区水下地形演变。结果表明:1953-2000年,68%左右的入海泥沙淤积在口门和滨海区。由于入海流路变迁,不同岸段的岸线变化具有各自的特征。刁口河流路以西岸线基本稳定;刁口河流路以东—孤东油田以北岸线经历先淤后冲,属于强侵蚀岸段,但在防潮大堤的保护下得到人为控制下的稳定;清水沟流路形成的岸线整体向海淤进,但清8 出汊后,清水沟老河口沙嘴南侧出现侵蚀。1976-1996 年,现行河口(清水沟流路) 水下地形总体上表现为淤积,顶坡段变缓,前坡段变陡。1996-2005 年,清水沟老河口水下地形顶坡段和前坡段发生侵蚀,底坡段呈现淤积;出汊新河口水下地形继续淤积,但程度和范围都比1976-1996 年的小。孤东油田近岸侵蚀加剧。  相似文献   

14.
Sediment rating parameters and their implications: Yangtze River, China   总被引:4,自引:0,他引:4  
This study examines the characteristics of sediment rating parameters recorded at various gauging stations in the Yangtze Basin in relation to their controls. Our findings indicate that the parameters are associated with river channel morphology of the selected reaches. High b-values (> 1.600) and low log(a) values (< − 4.000) occur in the upper course of the steep rock-confined river, characterizing high unit stream power flows. Low b-values (< 0.900) and high log(a) values (> − 1.000) occur in the middle and lower Yangtze River associated with meandering reaches over low gradients, and can be taken to imply aggradation in these reaches with low stream power. Higher b-values (0.900–1.600) and lower log(a)-values (− 4.000 to − 1.000) characterize the reaches between Yichang and Xinchang, immediately below the Three Gorges. These values indicate channel erosion and bed instability that result from changes in channel gradient from the upstream steep valley to downstream low slope flood plain settings. Differences in channel morphology accompany these changes. Confined, V-shaped valleys occur upstream and are replaced downstream by broad U-shaped channels. The middle and lower Yangtze shows an apparent increase in channel instability over the past 40 years. This inference is based on sediment rating parameters from various gauging stations that record increasing b-values against decreasing log(a)-values over that time. Analysis of the sediment load data also reveals a strong correlation between changes in sediment rating curve parameters and reduction of annual sediment budget (4.70 × 108 t to 3.50 × 108 t/year, from the 1950s to 1990s), largely due to the damming of the Yangtze and sediment load depletion through siltation in the Dongting Lake. Short-term deviations from the general trends in the sediment rating parameters are related to hydroclimatic events. Extreme low b-values and high log(a)-values signify the major flood years, while the reverse indicates drought events. When compared with rivers from other climate settings, it is evident that the wide range of values of the Yangtze rating parameters reflects the huge discharge driven by the monsoon precipitation regime of eastern China.  相似文献   

15.
The Rio Negro has responded significantly in the Late Pleistocene and Holocene to lagged environmental changes largely associated with activity during the last glacial in the Amazon basin. On the basis of geological structure, the Rio Negro can be divided into six distinct reaches that each reflects very marked differential processes and geomorphological styles. No deposits of the Upper Pleniglacial were recognized in the field. The oldest recognizable Late Pleistocene alluvial unit is the Upper Terrace of Middle Pleniglacial age (ca. 65–25 ka) (reach I), tentatively correlated with the oldest terrace identified on the left bank of reach III. At that time, the river was mainly an aggradational bed load system carrying abundant quartz sand, a product of more seasonal conditions in the upper catchment. The late glacial (14–10 ka) is represented by a lower finer-grained terrace along the upper basin (reach I), which was recognized in the Tiquié, Curicuriarí, and Vaupes rivers. At that time, the river carried abundant suspended load as a response to climatic changes associated with deglaciation.Since about 14 ka, the river has behaved as a progradational system, infilling in downstream series a sequence of structurally controlled sedimentary basins or ‘compartments,’ creating alluvial floodplains and associated anabranching channel systems. Reach II was the first to be filled, then reach III, both accumulating mainly sand. Fine deposits increase downstream in reach III and become predominant in some anabranch islands of the distal reach. The lowermost reaches of the Negro (V and VI) have been greatly affected by a rising base level and associated backwater effect from aggradation of the Amazon during late glacial and recent times. Reach V has acted almost entirely as a fine sediment trap. The remarkable Anavilhanas archipelago is the product of Holocene deposition in the upper part of this sedimentary basin; however, suspended sediment load declined about 1.5 ka, prior to the lower part of this basin becoming infilled.The progradational behavior of the Rio Negro, filling tectonic basins as successive sediment traps with sand in the upper basins and fines in the downstream ones, illustrates how a large river system responses to profound changes in Late Quaternary base level and sediment supply. The most stable equilibrium conditions have been achieved in the Holocene in reaches IIb and IIIa, where an anabranching channel and erosional–relictual island system relatively efficiently convey water and sediment downstream. Reaches IIIb and V never achieved equilibrium conditions during the Holocene, characterised as they are today with incomplete floodplains and open water.  相似文献   

16.
The drainage basin of the Deleg River (88 km2), located in the southern Ecuadorian Andes, was studied to assess the geomorphic and hydrologic response of a fluvial system to human-induced environmental change in its contributing area. Historical data on land use, channel morphology and sedimentology were collected, based on a spatial analysis of aerial photographs (1963–1995) and a field survey (2002). Analysis of channel cross-sectional profiles and sedimentological data revealed a major change in morphology and sedimentology of the Deleg River during the past four decades: (i) the active river channel narrowed by over 45%, (ii) the riverbed incised on average by over 1.0 m and (iii) the median grain size of the bed surface decreased from 13.2 cm to 4.7 cm. The spatial pattern of land cover within the Deleg catchment also changed considerably: highly degraded agricultural land in the low-lying areas was abandoned and partially afforested for timber and wood production, whereas secondary upland forest was increasingly cleared for expansion of cropland and pastures. Notwithstanding large changes in the spatial organization of land use within the catchment, the overall land use did not change significantly during the past four decades. This suggests that the response of the Deleg River to land-use change not only depends on the overall land-use change, but also on the spatial pattern of land-use/cover change within the catchment. Although forestation and regeneration of bare gully slopes and floors throughout the catchment only represented a minor part of the total land-use change, these land-use/cover changes had a major impact on the hydrological and sediment connectivity in the landscape.  相似文献   

17.
Northwestern California is prone to regional, high magnitude winter rainstorms, which repeatedly produce catastrophic floods in the basins of the northern Coast Ranges. Major floods on the Eel River in 1955 and 1964 resulted in substantial geomorphic changes to the channel, adjacent terraces, and tributaries. This study evaluated the changes and the effects of a moderate flood in 1997 through field observations and examination of aerial photographs that spanned from 1954 to 1996. The purpose was to document the nature and magnitude of geomorphic responses to these three floods and assess the rates and controls on the recovery of the Eel River and its tributaries. Channel widening from extensive bank erosion was the dominant geomorphic change along the lower Eel River during major floods. As a result of the 1964 flood, the largest amount of widening was 195 m and represented an 80% change in channel width. Channel narrowing characterized the periods after the 1955 and 1964 floods. More than 30 years after the 1964 flood, however, the river had not returned to pre-flood width, which suggests that channel recovery required decades to complete. A long recovery time is unusual given that the Eel River is located in an area with a “superhumid” climate and has an exceptionally high sediment yield. This long recovery time may reflect highly seasonal precipitation and runoff, which are concentrated in 3–5 months each winter. In contrast to the main stem of the Eel River, the dominant effects of floods on the tributaries of the Eel River were rapid aggradation of channel bed and valley floor followed by immediate downcutting. Dendrogeomorphic data, aerial photographs, and field observations indicate that thick wedges of gravel, derived largely from hillslope failures in upper reaches of the tributaries, are deposited at and immediately upstream of the mouths of tributaries as the stage of the Eel River exceeded that of the tributaries during major floods. In the waning stages of the flood, the tributaries cut through the gravel at a rate equal to the lowering of the Eel and generated unpaired terraces and nickpoints. The complete process of deposition and incision can occur within a few days of peak discharge. Although reworking of some sediment on the valley floor may continue for years after large floods, channel morphology in the tributaries appears to be a product of infrequent, high magnitude events. The morphology of the tributary channel also appears to be greatly influenced by the frequency and magnitude of mass wasting in headwater areas of small basins.  相似文献   

18.
黄河下游河床纵剖面形态及其地文学意义   总被引:8,自引:2,他引:6  
本文通过河床比降和凹度两个指标,研究黄河下游河床纵剖面形态的自动调整作用,结果发现比降和下凹度多年平均值分别为1.28和1.35,偏离均值为1~2%,变化很小,说明黄河下游河床纵剖面以近于平行抬升的形态调整,标志着河道已进入了老年期发育阶段。对于研究河道发育史和老年期河道的特点,以及在治河上均有重要的理论和现实意义  相似文献   

19.
J.A. Moody  R.H. Meade 《Geomorphology》2008,99(1-4):387-403
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes.Peak flood discharge was about 930 m3 s− 1, which lasted about eight days. During this time, the flood transported 8.2 million tons of sediment into and 4.5 million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7 m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5 m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16 m and the higher terrace by 0.063 m.Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07 m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.  相似文献   

20.
China's Yellow River has experienced its dramatically decreasing trend for the flow discharge since the construction and operation of large reservoirs located upstream. This low flow regulation has triggered a severe aggradation of the Ulan Buh Desert channel of the Yellow River because the declining flow exhibits no capability to scour and carry away large amount input of desert sands from the Ulan Buh Desert. Twenty monitoring cross-sections documented the Ulan Buh Desert channel has experienced its increasing aggradational trend in conjunction with its lateral migration decreasing trend from 1966 to 2005, which is opposite to the normal pattern of aggradation with deepening or symmetrical infilling for a channel located downstream of a reservoir. The channel aggradation can also be identified two stages: slow aggradation and rapid aggradation. Slow aggradation is characterized by the channel bed elevation rising 9.5 cm on average between 1968 and 1985, which responded to the operation of the Liujiaxia reservoir. During this period, the flow discharge was similar to pre-dam flow conditions but the sediment transport reduced to half of its pre-dam value. Because of about 0.24 × 108 t of desert sands entering the channel from the Ulan Buh Desert annually, this dilute flow indicated not to scour the channel as expected, but contrarily to cause the channel aggraded. Rapid aggradation followed completion of the Longyangxia reservoir with the channel bed elevation rising by 73 cm on average between 1986 and 2005. In this period, the combined regulation of Liujiaxia and Longyangxia reservoirs has caused the flow discharge decreasing dramatically, which is more beneficial for accumulation of the desert sands (0.19 × 108 t yr− 1 on average) in the desert channel, and led to the channel aggradation rate accelerated rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号