共查询到20条相似文献,搜索用时 11 毫秒
1.
利用常规观测资料、逐日降水和NCEP再分析资料等统计2007—2017年5—7月西南涡共计199例,其中110例移出源地发展。在移出型西南涡中有66例沿偏东路径移动,占比60%;东北路径西南涡约占28.2%;东南路径西南涡仅占10.9%。移出型西南涡与我国中东部降水具有密切关系:偏东型有利于沿江地区降水增多;东北型使江北大部分地区降水增加;东南型有利于华南地区降水增加。偏东型和东北型西南涡中心路径与雨带走向近乎平行,但存在不同程度的偏移,造成偏移差异的直接原因在于低涡北侧是否有降水。研究表明:当高空无干冷侵入时,低涡南侧偏南风越强,北侧空气湿度越大,北侧低空有偏东气流将有利于北侧空气抬升产生降水;当高空存在干冷侵入时,若北侧低层有一支湿润的偏东气流,二者叠加形成对流不稳定,也有利于降水。 相似文献
2.
3.
本文根据1981年至1990年5~6月的飞机物理探测资料,对西南低涡层状云系的液态含水量特征进行了分析,得到了一些初步结果.对四川省人工影响天气、大气探测和天气预报等工作有重要的参考价值. 相似文献
4.
近30年夏季移出型高原低涡的气候特征及其对我国降雨的影响 总被引:2,自引:0,他引:2
利用近30年(1981—2010年)历史天气图、MICAPS资料以及台站降雨资料,对6—8月移出型高原低涡的时空分布特征及其对我国降雨的影响进行了研究,并初步分析了不同路径移出型高原低涡的环流形势及降雨分布。结果表明:近30年来平均每年有9个高原低涡能够移出高原而发展,移出型高原低涡涡源主要在西藏改则、安多和青海沱沱河以北以及曲麻莱附近,并以东移为主,占移出型高原低涡的58.2%,而东北移和东南移的分别占25.5%和13.8%,其它路径占2.5%。东移路径移出型高原低涡频次与长江流域中上游、黄河流域上游及江淮地区的降雨有较好的正相关;东北移路径移出型低涡频次与长江流域上游、黄河流域以及东北降雨相关较好;东南移路径移出型低涡频次与高原东南侧及长江流域的降雨有较好正相关。各路径移出型低涡的降雨合成分析距平异常大值区分布与各路径正相关分布一致,且降雨异常大值中心与正相关大值中心相对应。利于高原低涡移出并发生降雨的500 hPa异常环流形势为:东移路径,中高纬异常环流型为“西高东低”分布,西太平洋副热带高压(简称西太副高)强度偏弱且位置偏东、偏南,低涡降雨带维持在长江流域与黄河流域之间;东北移路径,中高纬异常环流型仍为“西高东低”型,西太副高强度偏强且位置偏北、偏东,雨带维持在黄河流域及东北地区;东南移路径,为“两高夹一低”异常型环流,西太副高强度较强且位置偏西、偏南,降雨带位于长江流域及其以南地区。 相似文献
5.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究 总被引:4,自引:0,他引:4
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。 相似文献
6.
利用2012~2016年Micaps天气图资料和《西南低涡年鉴》,对西南低涡及不同涡源西南涡的变化特征、活动期和移动特征以及对降水的影响等进行了统计分析。结果表明:(1)西南低涡平均每年生成95次,但各年差异大。其中,九龙涡最多,盆地涡次之,小金涡最少。西南低涡多发时段在春季与夏初,其中,九龙涡多发时段在春季与夏季,盆地涡多发时段在冬季与春初,小金涡多发时段在冬末与春季。(2)西南低涡活动主要在4~7月,小金涡最长生命史可达168h,在7月;九龙涡最长生命史156h,在5月;盆地涡最长生命史144h,在4月。西南低涡大多数在生成后24h内消失。在12月的西南低涡生命史最短,绝大部分在24h内。(3)西南低涡有三分之一能移出涡源区。其中,九龙涡移出的个数最多,盆地涡其次,小金涡移出的个数最少,但移出几率最高。3~6月是西南低涡移出的主要时段。其中,九龙涡主要移出时段在4~7月;盆地涡主要移出时段在1~5月;小金涡主要移出时段在2~5月。(4)西南低涡主要移动路径是东北、东、东南。其中,九龙涡以东北移为主;盆地涡以东北移、东移为主;小金涡以东移、东南移为主。(5)除冬季、春初外,不同涡源西南涡不论活动时间长短,都会造成降水,九龙涡造成的降水一般比盆地涡大。西南涡造成的很强降水多出现在6~7月。 相似文献
7.
利用ERA5再分析资料与TMPA V7降水资料,对2010~2019年移动型和源地生消型两类西南涡的时空分布、移动和降水特征进行统计分析,结果表明:源地生消型和移动型西南涡年均分别为69和20例,移动型西南涡的主要源地为四川盆地,源地生消型西南涡的主要源地为九龙和四川盆地;两类西南涡均为春夏多、秋冬少,但移动型西南涡的季节差异更大,春夏季生成频次约为秋冬季的3倍;西南涡主要在夜间生成,但日间生成的西南涡中移动型占比较多;源地生消型和移动型西南涡平均生命史分别为15.4h和39.6h;移动型西南涡以偏东路径为主,春夏季移动路径明显较长,冬季移速最大,夏季最小;源地生消型西南涡降水以弱降水为主,移动型西南涡降水强度整体大于源地生消型,以强降水为主。 相似文献
8.
利用含Deardorff植被参数化方案的颜宏等有限区域细网格模式,研究西南低涡降水对青藏高原及其邻近区域植被覆盖和土壤湿度变化的敏感性,着重分析在“82.7”和“81.7”两次西南低涡降水过程中的降水、上升运动和地面感热与水汽通量对植被覆盖和土壤湿度的敏感性问题。试验表明,西南低涡降水对青藏高原及其邻近地区的植被覆盖和土壤湿度是非常敏感的,对大气低层上升运动和地面感热、潜热通量也较为敏感。 相似文献
9.
一次西南低涡造成华南暴雨过程的FY-2卫星观测分析 总被引:1,自引:2,他引:1
2008年6月11-13日华南发生了一次西南涡暴雨天气过程,其中,广西区有6个台站11日20时至12日20时的降水打破6月雨量历史纪录,分别为东兰306mm、环江218 mm、灵川270mm、桂林251 mm、柳城177mm和田林163 mm.采用FY-2卫星云图资料、NCEP再分析资料、常规观测资料及地面降水资料,对这次强降水过程的暴雨云团及其影响系统和环境场作了分析研究.结果表明:(1)红外和水汽图像配合,可以反映西南低涡发展东移过程中低层辐合带云系、高空扰动云系和弱冷空气的不同作用,云图的演变过程可以刻画强降雨发生时低层辐合、高层辐散的气流结构.(2)本次广西特大暴雨过程可分为两个阶段,第一阶段主要是西南涡东南侧的暖区降水,对流云团分布范围较广,中尺度对流系统具有涡旋状云系结构;第二阶段有弱冷空气南下,在边界层辐合线的组织下,中尺度对流系统组织成线状云带,南移消失.过程中,无论是红外云顶亮温随时间的演变,或者是红外与水汽亮温差的时间演变均可以反映云团的演变过程,并与强降水有较好对应关系.在局地要素满足暴雨发生的必要条件下,监测多通道亮温的急剧下降,可作为重要指标提前2~3 h预警强降雨的发生.(3)西南低涡暴雨云团出现在西南涡东南和南侧的南风盛行区域,云团发展伴有低空急流加强,同时,云系发展与500 hPa正涡度平流的贡献有关. 相似文献
10.
本文基于AREM模式,将高原所的西南涡加密探空资料引入模式作为初值后,进行敏感性试验,通过对比分析后发现:(1)在初值中引入加密探空资料后,四川东北部地区700hPa位势高度普遍偏低,西南部也略有偏低,而与之相反的是西北地区(甘肃)上空的位势高度场则多表现为偏高状态。700hPa高度上温度场以偏低为主,越靠近高原东侧边坡地带,偏差越显著,而川东北部地区则显示为正温度偏差。川西高原及边坡地带整层水汽含量显著偏少,而川北地区却偏多。正风速差值多出现在低涡西侧区域。(2)低涡路径的强波动主要发生在模拟前期,此后的低涡路径则是在前期磨合协调状态的基础上继续移动发展从降水分布来看,低涡停滞时间越长,降水量则越大。 相似文献
11.
基于FY-2C静止卫星红外和水汽通道资料,简单分析了发生在四川盆地的西南低涡暴雨云团生消过程,给出了一些有意义的云团生命特征。同时,结合相应的地面自动站降水资料,详细分析了卫星红外和水汽通道云顶亮温与对流云团降水之间的关系特征,结果表明:对于一完整对流降水过程,1小时内最低水汽亮温和水汽亮温增量能很好地描述地面1小时累计降水特征。然而,用静止卫星红外或水汽通道亮温来表征的云团降水特征是非常复杂的。尽管具有相同的最低云顶红外或水汽亮温,但对不同的对流过程其总体降水量级趋势不一样。而且,对于同一对流过程的不同发展阶段,即使出现云顶红外或水汽亮温一样,但其地面降水特征也是不一致的。甚至是对于同一时刻具有相同最低红外或最低水汽亮温特征的云,其降水落区与量级都不尽相同。正是这些复杂的降水特征,使得西南低涡对流云团的降水估算具有很大的难度。 相似文献
12.
青藏高原低涡活动对降水影响的统计分析 总被引:6,自引:0,他引:6
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。 相似文献
13.
影响云南的西南低涡统计特征 总被引:1,自引:0,他引:1
利用1980—2008年逐日08:00(北京时,下同)和20:00 700hPa高空图和云南125个测站的逐日降水量资料,对影响云南的西南低涡移动路径、时间变化、维持时间和对应的降水特征进行了统计分析。结果表明,约1/8~1/7的西南低涡能够移出四川并影响到云南,但过去30年来其总趋势是减少的。影响云南的西南低涡初生涡源区主要集中在九龙和四川盆地,东南路径最多,西南和偏南路径次之,受地形影响西南低涡一般影响不到滇西边缘和滇西南地区。春末和夏季西南低涡移出影响云南的频数最多,秋末和冬季最少。西南低涡开始影响云南的时间表现出日变化特征,在白天的影响几率为61.54%,其生命史呈指数衰减,大多不超过1天。西南低涡移出源地后,约有13.5%的低涡会影响云南并出现全省性强降水过程。其中,偏南路径西南低涡造成的强降水主要分布在哀牢山以西地区,东南路径的主要暴雨中心位于滇中和滇东南,西南路径的强降水主要分布在滇东地区。西南路径大到暴雨的出现频率最高、强度最强,应引起足够的重视;东南路径虽然最多,但大到暴雨的出现频率和强度均低于平均值。 相似文献
14.
在较长时间序列的基础上,利用客观分析统计的结果,阐述了西南低涡的气候特征.对近60年西南低涡个例的分析表明:利用再分析资料进行西南低涡的历史统计是可行的,能够反映出西南低涡的气候态特征,并且与实际观测事实相符,当西南低涡发生异常时,高空西风急流的位置会发生明显变化,两南低涡偏多时所对应的西风急流偏南明显,偏少时则北偏明显;通过其与降水的分析表明,西南低涡与湖北省降水相关较好,全省大部地区相关系数达到了0.35以上,尤其对极端降水的指示意义较为明显.此外,西南低涡与海温场也具有较好的相关性. 相似文献
15.
16.
本文对比分析了2009年夏季两场西南涡引发的暴雨天气过程,通过对涡度各个贡献项以及几个热力诊断量的分析认为,促使西南涡发展的主要贡献是大气的辐合,其次是垂直输送,β效应项的贡献是最小的,可以忽略。从几个热力诊断量来看,通常对流有效位能的释放时间都会先于最强降水的出现时间。K指数和总体指数的极值出现时间一般也略早于最强降水的出现时间。对流有效位能和K指数以及总体指数都对降水预报有一定的指示作用。 相似文献
17.
18.
西南低涡与不同系统相互作用形成暴雨的异同特征分析 总被引:1,自引:0,他引:1
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1〈0同时MPV2≥0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。 相似文献
19.
西南低涡与不同系统相互作用形成暴雨的异同特征分析 总被引:1,自引:0,他引:1
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1<0同时MPV2≧0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。 相似文献
20.
利用1979-2016年ERA-Interim一日四次高度场、风场再分析资料,根据源地的不同将西南涡细分为九龙涡、盆地涡和小金涡,对1979-2016年夏季(6-8月)不同涡源的西南涡的活动规律及其降水特征进行统计分析。结果表明,夏季西南涡平均年发生频数为11.6 a-1,其中生成的盆地涡最多(9.3 a-1),九龙涡次之(1.9 a-1),小金涡最少(0.4 a-1)。就移动频率而言,盆地涡移出率最高(44.2%),其次为小金涡(30.8%),九龙涡最低(29.73%)。38 a中夏季高影响型西南涡共有140例,只有105例能移出源地。生命史超过36 h的高影响型西南涡都会带来降水,并且超过88%的概率会造成大雨及以上的降水。高影响型九龙涡和盆地涡产生大雨及以上天气的概率分别是83%、91%,远远高于小金涡。 相似文献