首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
位场数据曲化平是位场数据处理解释中的重要运算,但是它的计算量和计算的复杂性影响了它在许多处理和解释方法技术中的应用.本文提出一种位场数据曲化平的迭代方法,即通过把位场数据曲化平视为平面位场数据向上延拓的反问题,得到曲化平的线性积分方程,再把曲面上位场数据视为曲面平均高程面上的位场数据,利用向下延拓的波数域广义逆算法把平均高程面上的位场数据向下延拓到设定平面上,再根据曲面和其平均高程面的相对起伏对设定平面上的向下延拓数据进行起伏校正,最后再把所得平面上的位场数据向上延拓得到曲面上的位场数据,并进行迭代.把这种方法用于三维理论模型数据和实际磁场数据的曲化平处理均获得了理想的结果.  相似文献   

2.
常规的转换波静校正的基本思想都是从地震波的运动学特征出发,基于地表一致性假设.在地表条件复杂和地表高程相差较大的地区,它不仅无法解决严重的静校正问题,反而会带来新的畸变.本文基于频率波数域波动方程偏移原理,采用波场延拓方法实现转换波静校正,其关键点在于时间空间域和频率波数域的相对应.文中通过坐标变换将起伏地表转化为新坐标系下的水平地表,把炮点和检波点映射到同一水平面上,然后在新坐标系下推导频率域波动方程延拓公式,接着对下行波P和上行转换波SV分别利用近地表速度向上延拓到基准面,恢复起伏地表到基准面之间的真实波场,最后转换到原始坐标系取出基准面数据完成转换波静校正.通过对模拟和实际数据处理,证明该方法是正确和有效的.  相似文献   

3.
The interpretation of the gravity anomaly on a horizontal plane over a causative body having circular symmetry about a vertical axis is considered from a rather unconventional approach. As the analytical expression for the gravity effect of a circular body assumes a closed form only on the axis of symmetry, the interpretation in this approach is carried out with the anomaly profile along the axis—which leads to simpler and faster computation. A numerical method is developed for computation of the anomaly profile along the vertical axis from the horizontal radial profile of the symmetric anomaly by upward continuation. Provision is also made for an end correction when the radial profile has only a limited extension. Some simple geometrical shapes are assumed for the causative body. Its parameters are then determined from least squares fitting of its gravity effects to the observed (upward continued) vertical profile (i) by the steepest descent method and (ii) by the Newton-Raphson method. Some applications of these methods are demonstrated.  相似文献   

4.
位场向下延拓的波数域广义逆算法   总被引:9,自引:5,他引:4       下载免费PDF全文
位场向下延拓是位场数据处理和反演中的重要运算,但是它的不稳定性影响了它在许多处理和反演方法技术中的应用.本文通过把位场向下延拓视为向上延拓的反问题,得到向下延拓的褶积型线性积分方程,再利用Fourier变换矩阵的正交对称特性,并结合矩阵的奇异值分解和广义逆原理,提出了一种稳定的不需要进行求逆运算的位场向下延拓广义逆方法——波数域广义逆算法,解决了位场大深度向下延拓的不稳定性问题.把这种方法用于三维理论模型数据和实际磁场数据的向下延拓获得了理想的结果.  相似文献   

5.
引力梯度归算的模拟计算   总被引:2,自引:1,他引:1       下载免费PDF全文
引入引力梯度不变量后可将GOCE卫星观测数据简化成扰动位的径向二阶导数边界条件,由于卫星轨道不规则性给解算带来了很大的困难,因此解算过程中需要将在轨道上建立的边界条件延拓到如平均球面这样的规则曲面上来,由此便需要对引力梯度的延拓或归算等问题展开研究.本文依据Taylor展开讨论了引力梯度的归算方法,并针对EGM2008...  相似文献   

6.
The main results in the theory of the interpretation of geopotential fields are generalized to the case of arbitrary variable electromagnetic fields by means of elaborating electrodynamic analogues for the integral of the Cauchy type.The generalized Kertz method for separating a variable electromagnetic field into parts related to the sources located in different regions of space is elaborated on the basis of this technique. The generalized Kertz method allows the selection of external and internal, normal and anomalous parts of the geomagnetic field, as well as the separation of geomagnetic anomalies into the surface and deep components caused by conductivity inhomogeneities in the Earth's crust and upper mantle.The theory of analytical continuation of variable electromagnetic fields in a conducting medium is also developed in the present work using the technique of analogues for the integral of the Cauchy type. It is shown that analytical continuation of a field downwards permits the determination of the location and form of deep geoelectric inhomogeneities according to the configuration of the isolines of flux functions for magnetic and electric fields.  相似文献   

7.
Summary The space-time ray method can be applied to the evaluation and continuation (extrapolation) of the complete seismic wave field in laterally inhomogeneous media with curved interfaces. The wave field propagates along certain space-time curves, called space-time rays. Their space projections correspond to standard rays. Examples of possible applications of the space-time ray method, where the standard ray method fails, are as follows: a) The propagation of seismic waves in slightly dissipative media, b) The computation of seismic wave fields generated by seismic sources with direction-dependent source-time variations. c) Downward continuation of the seismic wave field (actual seismograms) measured at the Earth's surface.  相似文献   

8.
Summary This paper is concerned with the behavior of surface features of the earth which are, or have been, acted on by a stress field. The theory used in this paper is that of classical elasticity. Mathematical models are made which represent perfectly elastic two-dimensional regions which have a notch (or protrusion as a reversed notch can be considered to be). The regions are assumed to be semi-infinite and the notch on the free surface. The loads, or boundary conditions, are then prescribed. The problem of determining the distribution of stress is then considered. Solutions to this problem are presented for the cases of a circular notch, a generalized circular notch and a type of notch whose mathematical representation is given parametrically. Using these solutions and applying a criterion for failure, it is possible to predict what the general trend of the faulting should be in an actual body which the model may represent. Possible applications to geological structures are indicated.  相似文献   

9.
Seismic data acquired along rugged topographic surfaces present well‐known problems in seismic imaging. In conventional seismic data processing, datum statics are approximated by the surface consistence assumption, which states that all seismic rays travel vertically in the top layer. Hence, the datum static for each single trace is constant. In case this assumption does not apply, non‐constant statics are required. The common reflection surface (CRS) stack for rugged surface topography provides the capability to deal with this non‐vertical static issue. It handles the surface elevation as a coordinate component and treats the elevation variation in the sense of directional datuming. In this paper I apply the CRS stack method to a synthetic data set that simulates the acquisition along an irregular surface topography. After the CRS stack, by means of the wavefield attributes, a simple algorithm for redatuming the CRS stack section to an arbitrarily chosen planar surface is performed. The redatumed section simulates a stack section whose acquisition surface is the chosen planar surface.  相似文献   

10.
Paraxial ray methods have found broad applications in the seismic ray method and in numerical modelling and interpretation of high-frequency seismic wave fields propagating in inhomogeneous, isotropic or anisotropic structures. The basic procedure in paraxial ray methods consists in dynamic ray tracing. We derive the initial conditions for dynamic ray equations in Cartesian coordinates, for rays initiated at three types of initial manifolds given in a three-dimensional medium: 1) curved surfaces (surface source), 2) isolated points (point source), and 3) curved, planar and non-planar lines (line source). These initial conditions are very general, valid for homogeneous or inhomogeneous, isotropic or anisotropic media, and for both a constant and a variable initial travel time along the initial manifold. The results presented in the paper considerably extend the possible applications of the paraxial ray method.  相似文献   

11.
In this paper we derive an integral formula that encompasses all linear processes on seismic data. These include migration, demigration and residual migration, as well as data mapping procedures such as transformation to zero offset, inverse transformation to zero offset, residual transformation to zero offset and offset continuation. The derivation of the equation is different from all previous approaches to unification. Here we do not use a cascaded operation between two operators, but rather the superposition principle. In this regard, the derivation is not only more fundamental, but also simpler and more general. We study the kinematics and the dynamics of these processes and show that the signals can be reconstructed asymptotically either by finding the envelope of particular surfaces or by stacking energy along “adjoint” surfaces. For example, in the case of migration, the first set of surfaces are isochrons, while the “adjoint” surfaces are diffraction responses. In practice, the distinction between these two types of surfaces is equivalent to choosing the order of the computational loops with regard to the input and output seismic traces.  相似文献   

12.
In common‐reflection‐surface imaging the reflection arrival time field is parameterized by operators that are of higher dimension or order than in conventional methods. Using the common‐reflection‐surface approach locally in the unmigrated prestack data domain opens a potential for trace regularization and interpolation. In most data interpolation methods based on local coherency estimation, a single operator is designed for a target sample and the output amplitude is defined as a weighted average along the operator. This approach may fail in presence of interfering events or strong amplitude and phase variations. In this paper we introduce an alternative scheme in which there is no need for an operator to be defined at the target sample itself. Instead, the amplitude at a target sample is constructed from multiple operators estimated at different positions. In this case one operator may contribute to the construction of several target samples. Vice versa, a target sample might receive contributions from different operators. Operators are determined on a grid which can be sparser than the output grid. This allows to dramatically decrease the computational costs. In addition, the use of multiple operators for a single target sample stabilizes the interpolation results and implicitly allows several contributions in case of interfering events. Due to the considerable computational expense, common‐reflection‐surface interpolation is limited to work in subsets of the prestack data. We present the general workflow of a common‐reflection‐surface‐based regularization/interpolation for 3D data volumes. This workflow has been applied to an OBC common‐receiver volume and binned common‐offset subsets of a 3D marine data set. The impact of a common‐reflection‐surface regularization is demonstrated by means of a subsequent time migration. In comparison to the time migrations of the original and DMO‐interpolated data, the results show particular improvements in view of the continuity of reflections events. This gain is confirmed by an automatic picking of a horizon in the stacked time migrations.  相似文献   

13.
近年来,利用时移微重力技术进行储层开发监测受到国内外学者广泛关注.时移微重力观测数据存在信噪比低,信号弱的问题,难以实现储层内物质运移的定量解释.为压制数据噪声,增强有效弱信号,本文研究了利用Tikhonov正则化方法反演等效层(源),并由等效源实现重力场向下延拓的方法;在此基础上,本文推导了波数域正则化等效源向下延拓算子.针对向下延拓场幅值衰减问题,提出了正则化等效源迭代补偿算法.通过模拟数据实验研究了不同深度正则化等效源滤波算子及向下延拓算子的波数响应;与波数域Tikhonov正则化向下延拓方法相比,正则化等效源向下延拓方法的延拓精度更高、更稳定.最后,将基于迭代补偿的正则化等效源向下延拓技术应用于实测时移微重力数据证实了该方法能够有效增强局部异常,实现时移微重力数据大深度稳定向下延拓.  相似文献   

14.
We describe an integrated method for solving the complex near‐surface problem in land seismic imaging. This solution is based on an imaging approach and is obtained without deriving a complex near‐surface velocity model. We start by obtaining from the data the kinematics of the one‐way focusing operators (i.e. time‐reversed Green's functions) that describe propagation between the acquisition surface and a chosen datum reflector using the common‐focus‐point technology. The conventional statics solutions obtained from prior information about the near surface are integrated in the initial estimates of the focusing operators. The focusing operators are updated iteratively until the imaging principle of equal traveltime is fulfilled for each subsurface gridpoint of the datum reflector. Therefore, the seismic data is left intact without any application of time shifts, which makes this method an uncommitted statics solution. The focusing operators can be used directly for wave‐equation redatuming to the respective reflector or for prestack imaging if determined for multiple reflecting boundaries. The underlying velocity model is determined by tomographic inversion of the focusing operators while also integrating any hard prior information (e.g. well information). This velocity model can be used to perform prestack depth imaging or to calculate the depth of the new datum level. We demonstrate this approach on 2D seismic data acquired in Saudi Arabia in an area characterized by rugged topography and complex near‐surface geology.  相似文献   

15.
In earlier publications, certain applications of space transformation operators in subsurface hydrology were considered. These operators reduce the original multi-dimensional problem to the one-dimensional space, and can be used to study stochastic partial differential equations governing groundwater flow and solute transport processes. In the present work we discuss developments in the theoretical formulation of flow models with space-dependent coefficients in terms of space transformations. The formulation is based on stochastic Radon operator representations of generalized functions. A generalized spectral decomposition of the flow parameters is introduced, which leads to analytically tractable expressions of the space transformed flow equation. A Plancherel representation of the space transformation product of the head potential and the log-conductivity is also obtained. A test problem is first considered in detail and the solutions obtained by means of the proposed approach are compared with the exact solutions obtained by standard partial differential equation methods. Then, solutions of three-dimensional groundwater flow are derived starting from solutions of a one-dimensional model along various directions in space. A step-by-step numerical formulation of the approach to the flow problem is also discussed, which is useful for practical applications. Finally, the space transformation solutions are compared with local solutions obtained by means of series expansions of the log-conductivity gradient.  相似文献   

16.
2D and 3D potential-field upward continuation using splines   总被引:1,自引:0,他引:1  
The dominant upward‐continuation technique used in the potential‐field geophysics industry is the fast Fourier transform (FFT) technique. However, the spline‐based upward‐continuation technique presented in this paper has some advantages over the FFT technique. The spline technique can be used to carry out level‐to‐uneven surface 2D and 3D potential‐field upward continuation. An example of level‐to‐uneven surface upward continuation of 3D magnetic data using the spline technique is shown, and it is evident that the continued anomalies are very close to the theoretical values. The spacing can be irregular. Synthetic examples using the spline technique to continue noise‐contaminated gravity and magnetic data upward to an altitude of 15 km on irregular grids are shown. Gaussian noise with a zero mean and a standard deviation of 1% does not cause much error and can readily be tolerated. Through comparison with the FFT technique, it is found that for low‐altitude gravity and magnetic upward continuation, both the FFT technique and the spline technique are suitable; for high‐altitude upward continuation, the FFT technique is inaccurate, whereas the spline technique works very well. Also, upward continuation by the spline technique has a smaller edge effect than upward continuation by the FFT technique. The spline‐based upward continuation technique works fairly well even when the periphery of a grid is not quiet: it is rather robust in general. A real example shows that the spline technique can be employed to perform upward continuation of total‐field magnetic data and to de‐emphasize near‐surface noise.  相似文献   

17.
In many land seismic situations, the complex seismic wave propagation effects in the near‐surface area, due to its unconsolidated character, deteriorate the image quality. Although several methods have been proposed to address this problem, the negative impact of 3D complex near‐surface structures is still unsolved to a large extent. This paper presents a complete 3D data‐driven solution for the near‐surface problem based on 3D one‐way traveltime operators, which extends our previous attempts that were limited to a 2D situation. Our solution is composed of four steps: 1) seismic wave propagation from the surface to a suitable datum reflector is described by parametrized one‐way propagation operators, with all the parameters estimated by a new genetic algorithm, the self‐adjustable input genetic algorithm, in an automatic and purely data‐driven way; 2) surface‐consistent residual static corrections are estimated to accommodate the fast variations in the near‐surface area; 3) a replacement velocity model based on the traveltime operators in the good data area (without the near‐surface problem) is estimated; 4) data interpolation and surface layer replacement based on the estimated traveltime operators and the replacement velocity model are carried out in an interweaved manner in order to both remove the near‐surface imprints in the original data and keep the valuable geological information above the datum. Our method is demonstrated on a subset of a 3D field data set from the Middle East yielding encouraging results.  相似文献   

18.
In view of considerable work done of late, it has become possible to have a new look at the prevalent theories about river channel patterns. In order to gain insight into the subject, this attempt is preceded by a classification of rivers. Theories about braided and meandering channels are next dealt with. Correlations concerning channel patterns achieve importance in field applications. Various available correlations are presented and correspondence or contradictions in them discussed.  相似文献   

19.
We present a geoid model for the area of Lake Vostok, Antarctica, from a combination of local airborne gravity, ice-surface and ice-thickness data and a lake bathymetry model. The topography data are used for residual terrain modeling (RTM) in a remove–restore approach together with GOCE satellite data. The quasigeoid is predicted by least-squares collocation (LSC) and subsequently converted to geoid heights. Special aspects of that method in presence of an ice sheet are discussed.It is well known that a body freely floating in water is in a state of hydrostatic equilibrium (HE). This usually applies, e.g., to ice shelves or sea ice. However, it has been shown that this is valid also for the ice sheet covering the subglacial Lake Vostok. Thus, we demonstrate the use of such a refined regional geoid model for glaciological and geophysical applications by means of the HE surface of that lake. The mean quadratic residual geoid signal (0.56 m) w.r.t. the GOCE background model exceeds the residual variations of the estimated apparent lake level (ALL) (0.26 m) within the central part of the lake. An approach considering the actual geopotential at the ALL has been derived and subsequently applied. In this context, downward continuation of the potential field within the ice sheet as well as the latitudinal tilt of off-geoid equipotential surfaces are discussed. In view of the accuracy of the ice-thickness measurements that dominate the total error budget of the estimated ALL these effects are negligible. Thus, the HE surface of subglacial lakes may safely be described by a constant height bias in small-scale regional applications. However, field continuation is significant with respect to the formal uncertainty of the quasigeoid, which is at the level of 5 cm given that accurate airborne gravity data (±2 mGal) are available.  相似文献   

20.
The analysis of the primary electromagnetic fields caused by steady state or transient electric current flowing along a current loop moving with a constant velocity below the sea surface has several applications. It supports the analysis of submarine physical data and it is useful for protecting ships from the threat of sea mines. The usual approach to the solution for the primary field starts from a hertz vector potential in the frequency domain due to a magnetic dipole. Subsequently it employs Fourier, Laplace, and Hankel transforms to describe the time variation of the primary electromagnetic induced field due to a loop. The result is applicable to both shallow and deep sea water environments. Because of the difference in velocity between source and receiver, a careful application of the convolution integral is necessary in order to adapt the source pulse solution to any type of transmitting current waveform. Furthermore, since the scattered field represents a fraction of the primary field, even minor differences in it caused by the differential velocity renders inadequate interpretation of EMI data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号