首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AEM (airborne electromagnetic) anomalies caused by massive sulphide conductors and superficial conductors can be recognized with a statistical method, as shown by an analysis of Input AEM data from Karnataka State. The weathering in the survey area is of tropical type. Parameters, such as various amplitude ratios and time parameters (inverse of decay rate) for exponential and power-law decay were analyzed for sulphide bodies, conducting soil, superficial conductors, and cultural conductors. Time parameters τ1 (exponential decay) is defined as ratio of time differences between the third and fourth channel to the logarithmic value of the relative amplitude of the two channels. Time parameter K1 (power-law decay) is defined as ratio of the difference of the logarithmic values of the delay times of the third and fourth channels to the logarithmic value of the relative amplitude of the two channels. The two parameters have been useful in recognizing sulphide conductors. Also the first channel Input amplitude and logarithmic plot of the transients appear to be helpful in conductor identification. Channel ratios seem to be the least effective parameters of conductor identification. In the area studied both power-law and the conventional exponential decay were found equally suitable for approximating Input AEM transients.  相似文献   

2.
Velekin and Bulgakov (1967) in an interesting model experiment while studying the transient electromagnetic response of a conductive sphere placed below a thin conductive sheet found that at the earlier stages of the transience, the composite system response corresponded to the response due to the overlying sheet alone and at the later stages, it corresponded to that of the sphere alone. To examine whether such a separation of responses due to individual components can be analytically studied and applied to other source configurations, we have analyzed an idealized model consisting of two spherical shells. We find that in corroboration with the above results, the general nature of the curve consists of two humps representing the responses dominated by the outer shell and the inner shell respectively. In addition, however, we find that the two humps gradually disappear to yield a smooth decay curve for increasing values of the ratio σd1b2d2a (where σ1, σ2 are the conductivities, d1, d2 are the thicknesses of the outer and inner shells respectively, and b and a are their respective distances from the centre) and the effect of inner shell on the composite system response is considerably reduced.  相似文献   

3.
Summary A method called the zero-line method for interpreting the total field magnetic anomalies of spherical bodies is described. The contour of zero-anomaly is controlled by a linear equation of the typeAx 2 +By 2 +Cxy +Dx +Ey +F = 0, where the coefficientsA toF are related to the depth of the sphere and the parameters relating to its position and magnetisation. From the coordinates (x, y) of the various points lying on the zero-contour, five normal equations for the above equation are set and solved for the various coefficients. The various parameters relating to the position and magnetisation of the sphere are then determined from these coefficients. It is expected that similar methods can be developed for interpreting magnetic anomalies of other three dimensional bodies also.  相似文献   

4.
With the increasing number of channels in AEM systems, computer data handling is becoming a necessity. The experience gained in processing of seismic and aeromagnetic data cannot be applied directly to low-frequency (100-5000 Hz) AEM methods. A novel scheme has been designed for AEM data processing and tested on 2900 km (1800 miles) of Input surveys. In the first step, the digital flight tapes are merged with digitized flight path recovery to form the primary data set. The validity of the raw data is controlled by the computer, but the interpreter has an option of checking them in perspective plots of channel amplitudes. The primary data set is reduced by processors which determine the location and type of anomalies and discard noise. Unlike the widely used deconvolution, the sequential processor determines first the anomaly location and then estimates parameters, such as peak amplitude, base width, and excess area, which are used as acceptance criteria. Interpretation parameters, such as σt, conductor depth, and dip are estimated by comparison with quantitative models. The recorded channel amplitudes are plotted together with the selected interpretation parameters in a profile form. The secondary data set which includes only the interpretation parameters for selected anomalies is graphically displayed as a schematic map of apparent σt. Elongated features are traced by a fan strike recognition routine and a trend map is automatically compiled and plotted. Disk storage is essential for second pass processing during which parts of the primary data set are searched for undiscovered anomalies matching the analyzed trend. The suggested procedure for AEM data processing is demonstrated on an Input MK V survey, Southern Indian Lake, Manitoba.  相似文献   

5.
The ascent of magma diapirs through the earth's mantle is modelled experimentally by the motion of a hot metal sphere through a fluid whose viscosity varies strongly with temperature. The dimensionless drag on the sphere (drag number D) and the heat transfer from it (Nusselt number Nu) are found as functions of the dimensionless velocity of the sphere (Peclet number Pe) and the viscosity contrast μ/μ0 = 10γ, where μ and μ0 are the viscosities of the fluid far from the sphere and at its surface. The drag D = D(Pe, γ) has two limits. For large Pe and small γ (“Stokes” limit), the drag approaches the Stokes' Law result. For small Pe and large γ (“lubrication” limit), the drag is orders of magnitude less than that predicted by Stokes' Law. Nu is a function of Pe alone. For reasonable values of the diapir radius and the viscosity contrast, the dimensionless scale height Pe/3 Nu may exceed a critical value, resulting in progressive melting during ascent. This suggests that diapirs may ascend great distances through the mantle while remaining largely molten. Lamont-Doherty Geological Observatory Contribution No. 3414.  相似文献   

6.
Abstract

The flow properties of an homogeneous fluid which is bounded by two concentric spheres and two meridional planes which intersect along a diameter of the spheres are investigated. The spheres rotate about this diameter with slightly different angular velocities. As in the axisymmetric case studied by Proudman (1956) and Stewartson (1966) the viscous terms in the equations of motion are important only in boundary layers on the spheres and on the cylinder C which circumscribes the inner sphere and which has generators parallel to the axis of rotation, provided the Ekman number E is small. In the inviscid region the velocities are independent of the coordinate measuring distance along the axis of rotation and are much weaker, by a factor 0(E ½), than the velocities in the Ekman layer on the driving surface (outer sphere). (It is assumed that the reference frame is fixed in the slower rotating inner sphere.) If the separation of the spheres is small compared to their radii then the asymmetric circulation inside C is characterized by an intense jet along the western wall. Loss of fluid from this jet sustains the eastward and northward flow in the inviscid interior where motion is driven by the suction of the Ekman layer on the outer sphere. (Geophysical conventions have been adopted.) Outside C an intense current is present on the eastern, not western, wall while motion in the inviscid region is westward, and away from the axis of rotation. Though there is no transport across C in the inviscid region, the meridional transport of the Ekman layer on the outer sphere is continuous across C and increases, through suction, as the equator is approached until it drains into an eastward flowing equatorial current of width 0(E 1/7). The eastern boundary current outside C and shear layers on C carry this fluid to the intersection of C and the western wall where it feeds the western boundary current inside C.

The relation between this study and the experiments of Baker and Robinson (1970) is discussed.  相似文献   

7.
A technique utilizing the convolution theorem is developed to obtain the time-domain electromagnetic response for a number of input pulses from the given step-function response. For illustration an idealized model of a homogeneously conducting non-permeable sphere placed in a uniform field is considered. The nature of the responses due to different types of pulses and their usefulness in estimating the constitution parameter of the sphere are discussed. To show the applicability of the suggested technique to generalized systems, calculations for a conducting permeable sphere are presented in the appendix.  相似文献   

8.
Solution of the gradiometric boundary value problems leads to three integral formulas. If we are satisfied with obtaining a smooth solution for the Earth’s gravity field, we can use the formulas in regional gravity field modelling. In such a case, satellite gradiometric data are integrated on a sphere at satellite level and continued downward to the disturbing potential (geoid) at sea level simultaneously. This paper investigates the gravity field modelling from a full tensor of gravity at satellite level. It studies the truncation bias of the integrals as well as the filtering of noise of data. Numerical studies show that by integrating T zz with 1 mE noise and in a cap size of 7°, the geoid can be recovered with an error of 12 cm after the filtering process. Similarly, the errors of the recovered geoids from T xz,yz and T xx-yy, 2xy are 13 and 21 cm, respectively.  相似文献   

9.
A shift approach is presented for evaluating and interpreting the response of rigid‐perfectly plastic single‐degree‐of‐freedom systems to dynamic loading. Scaling laws for such systems are, as the term suggests, multiplicative in nature, relating peak dynamic response to products of key problem parameters such as linear spectral coordinates, force reduction coefficient and peak values of the excitation and its time derivatives. Contrary to classical laws, the proposed approach is additive, imposing a shift in the ordinates and the abscissa of the excitation function by means of a set of parameters uniquely related to the yielding resistance of the system. The dynamic response is then obtained by integrating the modified excitation function in a linear‐like manner within a particular yielding branch, for the nonlinearity is incorporated into the forcing term. The mathematical validity of the approach is demonstrated analytically and its importance is highlighted for systems with symmetric yielding resistance subjected to near‐fault earthquake motions. The modified excitation function may be discontinuous between different yielding branches and relates uniquely to the development of plastic deformation. It is thereby referred to as Plastic Input Motion (PIM). It is shown that the ordinates and the duration of this function may be significantly (yet not necessarily) smaller than those of the original ground motion depending on yield strength. The relationship of the proposed approach to the existing methods and parameters of earthquake engineering such as Newmark's sliding block and relative ground acceleration, is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The presence of a conducting environment about a spherical ore body must be considered when calculating the transient electromagnetic response of the ore body due to a step current flowing in a large circular loop at the earth's surface. Failure to do this can easily lead to errors in excess of 10% in numerical calculations. Moreover, there is only a limited time interval in which the response of the spherical conductor is easily seen. In a poorly conducting ground the resonance response of the sphere is the first to be excited. Later, however, the non-resonance or wave-type response is excited. These waves destructively interfere and finally the response of the sphere decays with time as t?7/2. For a range of times and depths the best loop for detecting the sphere has about the same radius as the sphere.  相似文献   

11.
Abstract

A linear analysis is used to study the stability of a rapidly rotating, electrically-conducting, self-gravitating fluid sphere of radius r 0, containing a uniform distribution of heat sources and under the influence of an azimuthal magnetic field whose strength is proportional to the distance from the rotation axis. The Lorentz force is of a magnitude comparable with that of the Coriolis force and so convective motions are fully three-dimensional, filling the entire sphere. We are primarily interested in the limit where the ratio q of the thermal diffusivity κ to the magnetic diffusivity η is much smaller than unity since this is possibly of the greatest geophysical relevance.

Thermal convection sets in when the temperature gradient exceeds some critical value as measured by the modified Rayleigh number Rc. The critical temperature gradient is smallest (Rc reaches a minimum) when the magnetic field strength parameter Λ ? 1. [Rc and Λ are defined in (2.3).] The instability takes the form of a very slow wave with frequency of order κ/r 2 0 and its direction of propagation changes from eastward to westward as Λ increases through Λ c ? 4.

When the fluid is sufficiently stably stratified and when Λ > Λm ? 22 a new mode of instability sets in. It is magnetically driven but requires some stratification before the energy stored in the magnetic field can be released. The instability takes the form of an eastward propagating wave with azimuthal wavenumber m = 1.  相似文献   

12.
Abstract

Measurements have been made of the net horizontal force F acting on a sphere moving with horizontal velocity U (Reynolds numbers in the range 102-104) through a stratified fluid rotating about a vertical axis with uniform angular velocity Ω. In both homogeneous and stratified rotating fluids with small Rossby number R(R = Ua ? 1 where a is the radius of the sphere) the force F is of magnitude 2ΩρUV (where ρ is the density of the fluid and V is the volume of the sphere). In a homogeneous fluid the relative directions of F and U were found to depend on the quantity F = 8Ωa 2/UD (where D is the depth of the fluid in which the object is placed (Mason, 1975)). In a rotating stratified fluid the relative directions of F and U are found to depend on the inverse Froude number k(k = Na/U where N 2 = (g/δ)?ρ/?z) provided D > 4aΩ/N. In a homogeneous fluid with F ? 1 the force F is mainly in the U direction (a drag force due to inertial wave radiation) and is ~ ?0.4 |MX 2ΩρUV For F ? 1 a “Taylor column” occurs and the force, in correspondence with theoretical expectations, is ~ - 2Ω |MX UρV In a rotating stratified fluid with N ~2Ω and k ? 1 the force F is mainly in the U direction but is roughly one half of that occurring in the homogeneous situation with F ? 1 (tentatively explained as due to the evanescence of inertia-gravity disturbances). In a rotating stratified fluid with k ? 1 the flow should have no vertical motion (as with F ? 1) and again in correspondence with theoretical expectations the drag is ~ ?2 Ω |MX UρV. In a non-rotating stratified fluid the drag coefficient C D(C D = F U/½?ρU 2) was measured in the range k = 0.1 to 10 and had a maximum value ~ 1.2 for k ~ 3.  相似文献   

13.
Summary Green's theorem on harmonic functions makes it possible to determine the integral relationship between the harmonic function and its derivative with respect to the normal on a closed Lyapunov surface. The conditions of solvability are given by Fredholm's theory of integral equations. The solution for a sphere was presented by Molodenskii[3] and the general solution with the help of Molodenskii's parameter k by Ostach[4]. The present paper indicates a possibility of solving this problem with the help of a system of linear algebraic equations, a simplified modification of the Ostach-Molodenskii solution and, finally, a method, based on Eremeev's solution of the fundamental integral equation[5].  相似文献   

14.
Summary In this paper the quasi-static temperature and stress distributions set up in an elastic sphere by radiation from a point source at a finite distance from the centre of the sphere and out-side it, have been discussed. The temperature boundary condition has been taken in the general form involving an arbitrary function of time. The final solutions have been obtained in terms of series involving Legendre polynomials. Numerical calculations have been done on IBM 1620 Computer and a desk calculator. The results have been represented in graphs.Notation the del operator - u the displacement vector - T the excess of temperature over that at state of zero stress and strain - , Lamé's constants - /2(+) Poisson's ratio - coefficient of linear expansion - 2(1+) - a radius of the sphere - d distance of the point source from the centre of the sphere - d o a/d - K coefficient of thermal conductivity - h heat transfer coefficient of the surface  相似文献   

15.
This paper gives analytical expressions for the 1-D and 2-D frequency spectra of the self-potential field produced by a polarized sphere. In 1-D, the amplitude spectrum of the potential field leads to a criterion for determination of the depthh to the centre of the sphere. The polarization angle of the buried sphere can be calculated from the maximum point of the amplitude spectrum of the electric field. In 2-D, the depth to the centre of the polarized sphere can be calculated if the polarization is vertical.  相似文献   

16.
Several statistical postprocessing methods are applied to results from a numerical weather prediction (NWP) model to test the potential for increasing the accuracy of its local precipitation forecasts. Categorical (Yes/No) forecasts for 12hr precipitation sums equalling or exceeding 0.1, 2.0 and 5.0 mm are selected for improvement. The two 12hr periods 0600-1800 UTC and 1800-0600 UTC are treated separately based on NWP model initial times 0000 UTC and 1200 UTC, respectively. Input data are taken from three successive summer seasons, April-September, 1994-96. The forecasts are prepared and verified for five synoptic stations, four located in the western Czech Republic, and one in Germany near the Czech-German border. Two approaches to statistical postprocessing are tested. The first uses Model Output Statistics (MOS) and the second modifies the MOS approach by applying a successive learning technique (SLT). For each approach several statistical models for the relationship between NWP model predictors and predictand were studied. An independent data set is used for forecast verification with the skill measured by a True Skill Score. The results of the statistical postprocessing are compared with the direct model precipitation forecasts from gridpoints nearest the stations, and they show that both postprocessing approaches provide substantially better forecasts than the direct NWP model output. The relative improvement increases with increasing precipitation amount and there is no significant difference in performance between the two 12hr periods. The skill of the SLT does not depend significantly on the size of the initial learning sample, but its results are nevertheless comparable with the results obtained from the MOS approach, which requires larger developmental samples.  相似文献   

17.
An electrically conducting viscous fluid-filled spherical shell is permeated by an axisymmetric strong potential magnetic field with large Elssaser number 2 1. We describe analytically the steady flow driven by a slightly faster rotation of the conducting inner boundary of the shell. The main flow is controlled by Ekman-Hartmann boundary layers with a small thickness /, where 2 is the Ekman number. Asymptotics based on small –1 1 reveal the nature of a free shear layer O((/)1/2) and a super-rotation that allows a part of the fluid to rotate faster than the inner sphere. The free shear is following an imposed field line that is tangent to the inner or outer sphere. Meridional flux is concentrated in the shear and boundary layers. Fluid tends to rotate with the inner sphere and to expel azimuthal magnetic field from an -region restricted by the free shear in the spherical shell. For an imposed axial uniform magnetic field, this -region is outside the cylinder tangent to the inner sphere and rotates with the outer sphere. Weak differential rotation O(/) is inside the cylinder, while almost all difference in rotation rates between spheres is accommodated in the thin O((/)1/2) free shear. For an imposed dipole magnet, the region has a shape of a lobe touching the outer equator. Inside a super-rotation exists; this is the common case for such when the source of the imposed field is inside.  相似文献   

18.
Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is considered and solutions are developed in terms of the spherical vector system of Petrashen, which produces results in terms of displacements rather than displacement potentials and in a form suitable for accurate numerical computations. Analytical expressions for canonical scattering coefficients are obtained for both the cases of incidentP waves and incidentS waves. Calculations of energy flux in the scattered waves lead to elastic optical theorems for bothP andS waves, which relate the scattering cross sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with scattering cross sections that demonstrate important differences between these types of obstacles. A general result is that the frequency dependence of the scattering is defined by the wavelength of the scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that the intensity of thePS scattering is generally much stronger than theSP scattering. When averaged over all scattering angles, the mean intensity of thePS converted waves is2V p 2 /V s 4 times the mean intensity of theSP converted waves, and this ratio is independent of frequency. The exact solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh) approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the result that an increase in attenuation within the inclusion causes an increased scattering cross section with a marked preference for scatteredS waves. The complete generality of the results is demonstrated by showing waves scattered by the earth's core in the time domain, an example of high-frequency scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves.  相似文献   

19.
Abstract

The mean field induction equation of Steenbeck, Krause and Rädler (1966) is solved for anisotropic α ik -tensors of varying anisotropy. The attention is restricted to α2-dynamos in spheres with steady axisymmetric magnetic fields. The ratio of the electrical conductivity outside and inside the sphere is varied, but in all cases it is found that a steady dynamo does not exist when the anisotropy of the α ik -tensor exceeds a critical value. Such a critical value does not exist in the exceptional case of the Fermi boundary condition. The results emphasize the important effect of boundaries on the existence of solutions of the dynamo problem.  相似文献   

20.
Abstract

This study presents a new methodology for estimation of input data measurement-induced uncertainty in simulated dissolved oxygen (DO) and nitrate-nitrogen (NO3-N) concentrations using the Hydrological Simulation Program–FORTRAN (HSPF) model and data from the Amite River, USA. Simulation results show that: (1) a multiplying factor of 1.3 can be used to describe the maximum error in temperature measurements; similarly, a multiplying factor of 1.9 was estimated to accommodate the maximum of ±5% error in rainfall measurements; (2) the uncertainty in simulated DO concentration due to positive temperature measurement errors can be described with a normal distribution, N(0.062, 0.567); (3) the uncertainty in simulated NO3-N concentration due to rainfall measurement errors follows a generalized extreme value distribution; and (4) the probability density functions can be utilized to determine the measurement-induced uncertainty in simulated DO and NO3-N concentrations according to the risk level acceptable in water quality management.

Editor D. Koutsoyiannis

Citation Patil, A. and Deng, Z.-Q., 2012. Input data measurement-induced uncertainty in watershed modelling. Hydrological Sciences Journal, 57 (1), 118–133.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号