首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
We have used the ROSAT PSPC to study the properties of a sample of 24 X-ray-bright galaxy groups, representing the largest sample examined in detail to date. Hot plasma models are fitted to the spectral data to derive temperatures, and modified King models are used to characterize the surface brightness profiles.
In agreement with previous work, we find evidence for the presence of two components in the surface brightness profiles. The extended component is generally found to be much flatter than that observed in galaxy clusters, and there is evidence that the profiles follow a trend with system mass. We derive relationships between X-ray luminosity, temperature and optical velocity dispersion. The relation between X-ray luminosity and temperature is found to be L X∝ T 4.9, which is significantly steeper than the same relation in galaxy clusters. These results are in good agreement with pre-heating models, in which galaxy winds raise the internal energy of the gas, inhibiting its collapse into the shallow potential wells of poor systems.  相似文献   

2.
3.
4.
5.
Ram-pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram pressure and the ram-pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram pressures that are likely to cause an expedient loss of all gas. Strong ram pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion on to a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram pressures of  >10−11 dyn cm−2  which most likely led to a substantial loss of the gas.  相似文献   

6.
We analyse the ASCA spectra accumulated within 100 kpc radii of 12 of the brightest groups of galaxies. Upon fitting isothermal models (1T) jointly to the ASCA SIS and GIS spectra we obtain fits for most groups that are of poor or at best marginal quality and give very subsolar metallicities similar to previous studies, Z =0.29±0.12 Z. Two-temperature models (2T) provide significantly better fits for 11 out of the 12 groups, and in every case have metallicities that are substantially larger than obtained for the 1T models, Z =0.75±0.24 Z. Though not very well constrained, for most of the groups absorption in excess of the Galactic value is indicated for the cooler temperature component of the 2T models. A simple multiphase cooling flow model gives results analogous to the 2T models including large metallicities, Z =0.65±0.17 Z. The nearly solar Fe abundances and also solar /Fe ratios indicated by the 2T and cooling flow models are consistent with models of the chemical enrichment of ellipticals, groups, and clusters which assume ratios of Type Ia to Type II supernovae and an initial mass function (IMF) similar to those of the Milky Way.
Thus we have shown that the very subsolar Fe abundances and Si/Fe enhancements obtained from most previous studies within r 100 kpc of galaxy groups are an artefact of fitting isothermal models to the X-ray spectra, which also has been recently demonstrated for the brightest elliptical galaxies. Owing to the importance of these results for interpreting X-ray spectra, in an appendix we use simulated ASCA observations to examine in detail the 'Fe bias' and 'Si bias' associated with the spectral fitting of ellipticals, groups and clusters of galaxies.  相似文献   

7.
8.
We investigate the history of galactic feedback and chemical enrichment within a sample of 15 X-ray bright groups of galaxies, on the basis of the inferred Fe and Si distributions in the hot gas and the associated metal masses produced by core-collapse and Type Ia supernovae (SNe). Most of these cool-core groups show a central Fe and Si excess, which can be explained by prolonged enrichment by SN Ia and stellar winds in the central early-type galaxy alone, but with tentative evidence for additional processes contributing to core enrichment in hotter groups. Inferred metal mass-to-light ratios inside r 500 show a positive correlation with total group mass but are generally significantly lower than in clusters, due to a combination of lower global intracluster medium (ICM) abundances and gas-to-light ratios in groups. This metal deficiency is present for products from both SN Ia and SN II, and suggests that metals were either synthesized, released from galaxies or retained within the ICM less efficiently in lower mass systems. We explore possible causes, including variations in galaxy formation and metal release efficiency, cooling out of metals, and gas and metal loss via active galactic nuclei (AGN) – or starburst-driven galactic winds from groups or their precursor filaments. Loss of enriched material from filaments coupled with post-collapse AGN feedback emerges as viable explanations, but we also find evidence for metals to have been released less efficiently from galaxies in cooler groups and for the ICM in these to appear chemically less evolved, possibly reflecting more extended star formation histories in less massive systems. Some implications for the hierarchical growth of clusters from groups are briefly discussed.  相似文献   

9.
This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B - and R -band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the ov_wav package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be as low as 28.4 B mag arcsec−2. Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.  相似文献   

10.
11.
We discuss the X-ray properties of the cooling flows in a sample of 30 highly X-ray luminous clusters of galaxies, observed using the ASCA and ROSAT satellites. We demonstrate the need for multiphase models to consistently explain the spectral and imaging X-ray data for the clusters. The mass deposition rates of the cooling flows, independently determined from the ASCA spectra and ROSAT images, exhibit good agreement and exceed 1000 M yr−1 in the largest systems. We confirm the presence of intrinsic X-ray absorption in the clusters using a variety of spectral models. The measured equivalent hydrogen column densities of absorbing material are sensitive to the spectral models used in the analysis, varying from average values of a few 1020 atom cm−2 for a simple isothermal emission model, to a few 1021 atom cm−2 using our preferred cooling flow models, assuming in each case that the absorber lies in a uniform foreground screen. The true intrinsic column densities are likely to be even higher if the absorbing medium is distributed throughout the clusters. We summarize the constraints on the nature of the X-ray absorber from observations in other wavebands. Much of the X-ray absorption may be caused by dust.  相似文献   

12.
Studies of the X-ray surface brightness profiles of clusters, coupled with theoretical considerations, suggest that the breaking of self-similarity in the hot gas results from an 'entropy floor', established by some heating process, which affects the structure of the intracluster gas strongly in lower-mass systems. By fitting analytical models for the radial variation in gas density and temperature to X-ray spectral images from the ROSAT PSPC and ASCA GIS, we have derived gas entropy profiles for 20 galaxy clusters and groups. We show that, when these profiles are scaled such that they should lie on top of one another in the case of self-similarity, the lowest-mass systems have higher-scaled entropy profiles than more massive systems. This appears to be due to a baseline entropy of depending on the extent to which shocks have been suppressed in low-mass systems. The extra entropy may be present in all systems, but is detectable only in poor clusters, where it is significant compared with the entropy generated by gravitational collapse. This excess entropy appears to be distributed uniformly with radius outside the central cooling regions.
We determine the energy associated with this entropy floor, by studying the net reduction in binding energy of the gas in low-mass systems, and find that it corresponds to a pre-heating temperature of 0.3 keV. Since the relationship between entropy and energy injection depends upon gas density, we are able to combine the excesses of 70140 keV cm2 and 0.3 keV to derive the typical electron density of the gas into which the energy was injected. The resulting value of implies that the heating must have happened prior to cluster collapse but after a redshift z 710. The energy requirement is well matched to the energy from supernova explosions responsible for the metals which now pollute the intracluster gas.  相似文献   

13.
Estimating the temperature and metal abundance of the intracluster and the intragroup media is crucial to determine their global metal content and to determine fundamental cosmological parameters. When a spatially resolved temperature or abundance profile cannot be recovered from observations (e.g. for distant objects), or deprojection is difficult (e.g. due to a significant non-spherical shape), only global average temperature and abundance are derived. After introducing a general technique to build hydrostatic gaseous distributions of prescribed density profile in potential wells of any shape, we compute the global mass-weighted and emission-weighted temperature and abundance for a large set of barotropic equilibria and an observationally motivated abundance gradient. We also compute the spectroscopic-like temperature that is recovered from a single temperature fit of observed spectra. The derived emission-weighted abundance and temperatures are higher by 50 to 100 per cent than the corresponding mass-weighted quantities, with overestimates that increase with the gas mean temperature. Spectroscopic temperatures are intermediate between mass and luminosity-weighted temperatures. Dark matter flattening does not lead to significant differences in the values of the average temperatures or abundances with respect to the corresponding spherical case (except for extreme cases).  相似文献   

14.
15.
We present an extensive study of the double β model for the X-ray surface brightness profiles of clusters, and derive analytically the gas density and total masses of clusters under the hydrostatic equilibrium hypothesis. It is shown that the employment of the double β model instead of the conventional single β model can significantly improve the goodness-of-fit to the observed X-ray surface brightness profiles of clusters, which will in turn lead to a better determination of the gas and total mass distributions in clusters. In particular, the observationally fitted β parameter for the extended component in a double β model may become larger. This opens a new possibility of resolving the long-standing β discrepancy for clusters. Using an ensemble of 33 ROSAT PSPC observed clusters drawn from the Mohr, Mathiesen & Evrard sample, we find that the asymptotic value of β fit is 0.83±0.33 at large radii, consistent with both the average spectroscopic parameter β spec=0.78±0.37 and the result given by numerical simulations.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号