首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of magnetic field and mass transfer on the flow of an elasto-viscous fluid past an infinite vertical plate, when the plate is moving with uniform velocityU, are discussed. The magnetic lines of force are assumed to be fixed relative to the plate. The Laplace transform method is used to obtain the expression for velocity. The effect of various parameters, occurring into the problem, is discussed with the help of tables.  相似文献   

2.
The effect of a uniform transverse magnetic field on the free-convection and mass-transform flow of an electrically-conducting fluid past an infinite vertical plate for uniformly accelerated motion of the plate through a porous medium is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expression for the velocity field and skin-friction are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed.  相似文献   

3.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically-conducting fluid past an infinite, vertical, porous plate for both classes of impulsive as well as uniformly-accelerated motion of the plate is discussed. The magnetic lines of force are assumed to be fixed relative to the plate. Expressions for the velocity field and skin friction for both cases are obtained by the Laplace transform technique. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is extensively discussed with the help of graphs and tables.  相似文献   

4.
The effects of rotation and magnetic field on the Couette flow of an electrically-conducting fluid between two parallel plates have been discussed when one of the plates has been set into impulsive motion. Under the assumption of negligible induced magnetic field and the applied field being fixed relative to the moving plate, the governing momentum equations have been solved exactly, and the expressions for velocity and skin friction have been presented. The variations of velocity and skin friction have been discussed for different parameter values. The decrease in velocity due to rotation and its increase due to magnetic field have been shown.  相似文献   

5.
The unsteady flow near an infinite flat plate, which is oscillating harmonically in its own plane, is studied in the presence of a magnetic field subjected to suction or injection. The magnetic field is perpendicular to the plate and the flow of viscous incompressible and electrically conducting fluid is regarded as being initially at rest. Exact solutions for velocity and skin-friction are obtained for the magnetic field fixed to the fluid or to the plate.  相似文献   

6.
The unsteady free-convection flow of an electrically-conducting fluid near a moving vertical plate of infinite extent is investigated in the presence of uniform transverse magnetic field fixed to the fluid or to the plate. Exact solution of this problem is obtained with the aid of the Laplace transform technique, when the plate is moving with a velocity which is an arbitrary functiuon of time. The solution is exemplified for three particular cases of physical interest; the non-magnetic case is also discussed.  相似文献   

7.
The stability of helical magnetic fields is investigated when fluid motions are present along the lines of force. The general dispersion relation is obtained and some limiting cases are examined. It is established that the configuration can be unstable when the velocity field exceeds a certain critical value. This result is to be compared with the case when the helical fields confined by a rigid boundary are stable when the energy density in the velocity field is at least equal to that of the magnetic field.  相似文献   

8.
The unsteady flow of an electrically conducting fluid past an infinite plate with constant suction is investigated in the presence of an external magnetic field and buoyancy forces. The temperature of the plate is assumed to oscillate in time about a constant mean and the flow is considered to be free of convection. For the method of solution, we have employed a small parameter approach when this small parameter is a non-dimensional quantity which is related to the viscoelastic constant of the fluid. Analytical expressions are obtained for the temperature distribution and the velocity profile of the fluid. These analytical results clearly show that the velocity profile is strongly damped when the magnetic field is more intense. This means that the applied magnetic field causes the fluid to move slower as compared with the non-magnetic case.  相似文献   

9.
The effect of a uniform transverse magnetic field on the free-convection flow of an electrically conducting fluid past a uniformly accelerated infinite vertical porous plate is discussed. Finite-difference method has been used to obtain the solution of the governing equations when the Prandtl number is not equal to unity. The velocity profiles have been shown graphically for both cases, cooling and heating of the porous plate. The numerical values of the skin-friction are entered in table and the effects of the various parameter are discussed on the flow field.  相似文献   

10.
The effect of Hall currents on the hydromagnetic free-convection flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is discussed. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex velocity with the help of the Laplace transform method when the Prandtl number is equal to unity. The influence of the various parameters on the unsteady flow field is presented for both the cases, cooling and heating of the porous plate by free-convection currents.  相似文献   

11.
Rotation effect on the hydromagnetic free-convection flow of an electrically conducting, viscous, and incompressible fluid past a steadily moving vertical porous plate has been analysed in the presence of a transverse magnetic field. The free-stream velocity oscillates in time about a constant mean, while the suction velocity, normal to the porous plate, is constant. The magnetic Reynolds number of the flow is taken small enough so that the induced magnetic field can be neglected. The plate temperature is constant and the difference between the temperature of the plate and the free stream is moderately large causing the free-convection currents. The flow field is described by nonlinar coupled system of equations. With viscous dissipative heat taken into account, approximate solutions of the problem are obtained for the components of velocity field and temperature field as well as for the skin-friction components and rate of heat transfer.  相似文献   

12.
The effect of rotation on unsteady free-convective started vertical plate is considered. It is assumed that the induced magnetic field is negligible compared to the applied magnetic field, which is fixed with the moving plate. Mathematical expressions for velocity and skin-friction are obtained by the Laplace transform technique. The profiles for velocity components are shown graphically with the effects of the rotation parameter, magnetic parameter and Grashof number. The numerical values of skin-friction components are given in tabalar form for different values of the parameters.  相似文献   

13.
The unsteady free-convection flow of an electrically-conducting fluid near an oscillating vertical plate of infinite extent, is studied in the presence of a uniform transverse magnetic field. Exact solutions for velocity, temperature and skin friction are obtained with the aid of the Laplace transform method, when the plate is oscillating harmonically in its own plane. The influence of various parameters, entering into the problem, is discussed for the velocity field and skin-friction.  相似文献   

14.
With viscous dissipation and Joule heating taking into account a numerical solution of magnetohydrodynamic free convection flow, in the Stokes's problem, is obtained for different values of Prandtl numberP. The fluid is viscous, incompressible, and electrically conducting and the magnetic lines of force are assumed to be fixed relative to the plate which is started moving impulsively in its own plane (ISP) or it is uniformly accelerated (UAP). The solution is obtained with an implicit second-order method, forP=0.71 (air) andP=7 (water) and the obtained results are shown on figures and tables.  相似文献   

15.
The three-dimensional free-convection flow near an infinite vertical plate moving in a rotating fluid in the presence of a transverse magnetic field is studied in the case when the plate temperature undergoes a thermal transient. An exact solution has been obtained by defining a complex velocity with the help of the Laplace-transform technique, when the plate is moving with a velocity which is an arbitrary function of time. Three special cases of physical interest are also discussed.  相似文献   

16.
A numerical solution of magnetohydrodynamic free-convection flow, in the Stokes' problem, for a porous vertical plate, is obtained, when Prandtl numberP is not equal to one. The magnetic lines of force are assumed to be fixed relative to the plate which is started moving impulsively in its own plane (I.S.P.) or it is uniformly accelerated (U.A.P.). The solution is obtained by the Crank-Nicolson method, which is an implicit second-order method, forP=0.71 (air) andP=7 (water). The obtained results are shown on figures and tables.  相似文献   

17.
The three-dimensional flow of a viscous incompressible electrically conducting fluid near an infinite plate (or wall) of non-conductor, which is oscillating harmonically in a uniform rotating medium, is studied in the presence of a uniform magnetic field. The impressed uniform magnetic field is perpendicular to the plate and the induced magnetic field is considered. Exact solution of this problem is obtained for the velocity and magnetic fields. Neglecting the induced magnetic field we readily obtain the results of all the previous investigations. The effects of the rotation and the magnetic field are comparable with one another and are discussed for the whole problem. Also, the drag and the lateral stress on the plate are discussed.  相似文献   

18.
In mean‐field magnetohydrodynamics the mean electromotive force due to velocity and magnetic‐field fluctuations plays a crucial role. In general it consists of two parts, one independent of and another one proportional to the mean magnetic field. The first part may be nonzero only in the presence of mhd turbulence, maintained, e.g., by small‐scale dynamo action. It corresponds to a battery, which lets a mean magnetic field grow from zero to a finite value. The second part, which covers, e.g., the α effect, is important for large‐scale dynamos. Only a few examples of the aforementioned first part of the mean electromotive force have been discussed so far. It is shown that a mean electromotive force proportional to the mean fluid velocity, but independent of the mean magnetic field, may occur in an originally homogeneous isotropic mhd turbulence if there are nonzero correlations of velocity and electric current fluctuations or, what is equivalent, of vorticity and magnetic field fluctuations. This goes beyond the Yoshizawa effect, which consists in the occurrence of mean electromotive forces proportional to the mean vorticity or to the angular velocity defining the Coriolis force in a rotating frame and depends on the cross‐helicity defined by the velocity and magnetic field fluctuations. Contributions to the mean electromotive force due to inhomogeneity of the turbulence are also considered. Possible consequences of the above findings for the generation of magnetic fields in cosmic bodies are discussed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
An analysis of a two-dimensional unsteady flow of a viscous, incompressible electrically-conducting fluid through a porous medium bounded by two infinite parallel plates under the action of a transverse magnetic field is presented. The lower plate is fixed while the other is oscillating in its own plane. Expressions for the transient velocity, the amplitude, the phase angle, and the skin-friction are derived. The effects of the magnetic parameters, permeability of the porous medium, and the frequency parameter are discussed.  相似文献   

20.
In this paper, the nonsteady flow of non-Newtonian power-law conducting fluid through a porous medium past an infinite porous plate is investigated. The system is stressed by a constant transverse magnetic field. The velocity outside the boundary layer depends exponentially on time. The rheological effects are shown and discussed on the shear stress in terms of rheological parameter of power-law fluid. The approximate solution in a closed form were obtained by using the Galerkin method. Also the effect of the magnetic field and permeability parameter are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号