首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced > 4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5–11.5 km. Curiously < 400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (> 600 °C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting > 28 m.y., and induced by the steep continent–ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.  相似文献   

2.
The Dalrymple Trough marks part of the transform plate boundary between India and Arabia in the northern Arabian Sea. Oblique extension is presently active across this portion of the boundary at a rate of a few millimetres per year, and seismic reflection profiles across the trough confirm that it is an extensional structure. We present new swath bathymetric and wide-angle seismic data from the trough. The bathymetric data show that the trough is bounded by a single, steep, 3-km-high scarp to the southeast and a series of smaller, en-echelon scarps to the northwest. Wide-angle seismic data show that a typical oceanic crustal velocity structure is present to the northwest, with a crustal thickness of ~ 6 km. There is an abrupt change in crustal thickness and velocity structure at the northwestern edge of the trough, and the trough itself is underlain by 12-km-thick crust interpreted as thinned continental crust. Therefore we infer that Dalrymple Trough is an unusual obliquely extending plate boundary at which continental crust and oceanic crust are juxtaposed. The extensional deformation is focused on a single major fault in the continental lithosphere, but distributed over a region ~ 60 km wide in the oceanic lithosphere.  相似文献   

3.
Age of Seychelles–India break-up   总被引:1,自引:0,他引:1  
Many continental flood basalt provinces are spatially and temporally linked with continental break-up. Establishing the relative timing of the two events is a key step in determining their causal relationship. Here we investigate the example of the Deccan Traps and the separation of India and the Seychelles. Whilst there has been a growing consensus as to the age of the main phase of the Deccan emplacement (65.5 ± 1 Ma, chron 29r), the age of the rifting has remained unclear. We resolve this issue through detailed seafloor magnetic anomaly modeling (supported by wide-angle and reflection seismic results) of the north Seychelles and conjugate Laxmi Ridge/Gop Rift margins, and geochemistry and 40Ar/39Ar geochronology of rocks from the north Seychelles margin. We show that syn-rift volcanics offshore the Seychelles Islands in the form of seaward-dipping reflectors were most likely erupted during chron 28n, and the first organized seafloor spreading at the Carlsberg Ridge also initiated during this chron at 63.4 Ma. The severing of the Seychelles occurred by a south-eastward ridge propagation that was completed by the start of chron 27n (~ 62 Ma). A brief, pre-28r phase of seafloor spreading occurred in the Gop Rift, possibly as early as 31r–32n (~ 71 Ma). Initial extension at the margin therefore preceded or was contemporaneous with the Deccan emplacement, and separation of the Seychelles was achieved less than 3.5 Ma afterwards. This is the shortest time interval between flood basalt emplacement and break-up yet reported for any continental flood basalt-rifted margin pair. A contributing factor to the apparently short interval in the Deccan case may be that rifting occurred by a ridge jump into already thinned continental lithosphere. However, we conclude that external plate-boundary forces, rather than the impact of a mantle plume, were largely responsible for the rifting of the Seychelles from India.  相似文献   

4.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


5.
Subsidence of the Bahama Escarpment, determined from deep-diving submersible and dredge samples, is used to constrain the nature of crust underlying the Bahamas. Horizontal disposition of the Hauterivian/Barremian (125 Ma) age boundary along the Bahama Escarpment is inconsistent with an underlying oceanic crust (either normal or thickened) here, and suggests that thinned continental crust underlies the Bahamas. Subsidence curves are then fit based on a stretched lithosphere model to a stratigraphic section (2000–4000 m) off Cat Island. This analysis indicates crustal thinning by a factor (β) of 2.0–2.5, resulting in present crustal thicknesses of 10–12 km. We propose that rifting beneath the Bahamas occurred from middle (175–180 Ma) to late (160 Ma) Jurassic time. The pre-extension Bahamas fit between North and South America and Africa in Early Jurassic time, eliminating overlap of the present Bahamas onto Africa in reconstructions of the North Atlantic.  相似文献   

6.
The increased depth and volume of melting induced in a higher temperature Archaean mantle controls the stability of the lithosphere, heat loss rates and the thickness of the oceanic crust. The relationship between density distributions in oceanic lithosphere and the depth of melting at spreading centres is investigated by calculating the mineral proportions and densities of residual mantle depleted by extraction of melt fractions. The density changes related to compositional gradients are comparable to those produced by thermal effects for lithosphere formed from a mantle which is 200°C or more hotter than modern upper mantle. If Archaean continental crust formed initially above oceanic lithosphere, the compositional density gradients may be sufficient to preserve a thick Archaean continental lithosphere within which the Archaean age diamonds are preserved. The amount of heat advected by melts at mid-ocean ridges today is small but heat advected by melting becomes proportionally more important as higher mantle temperatures lead to a greater volume of melt and as the rate of production of oceanic plates increases. Archaean tectonics could have been dominated by spreading rates 2–3 times greater than now and with mantle temperatures between ca. 1600°C and 1800°C at the depth of the solidus. Mid-ocean ridge melting would produce a relatively thick but light refractory lithosphere on which continents could form, protected from copious volcanism and high mantle temperatures.  相似文献   

7.
Thermally, the lithosphere may be defined as that outer portion of the earth in which heat is transferred primarily by conduction. It generally includes the crust and part of the mantle. The thermal regime of continental lithosphere is determined by many factors including heat flow from the asthenosphere, the vertical and lateral variation of both thermal conductivity and radiogenic heat production, tectonic history, and such superficial processes as climatic history and the shallow hydrothermal regime. From studies of the global heat flow data set, two generalizations regarding continental lithosphere have arisen, namely that: 1) there is a negative correlation between heat flow and tectonic age of continental lithosphere; and 2) the thermal evolution of continental lithosphere is similar to that of ocean basins with the result that the “stable geotherm” is similar in both environments. When continental heat-flow data are studied from a regional rather than a global point of view, considerable doubt arises as to the general applicability of either statement. R. U. M. Rao and his associates have demonstrated that while Precambrian terranes do have demonstrably lower heat flows than, say, Tertiary terranes, the data are not normally distributed and it is not possible to establish a negative correlation between heat flow and age in any rigorous statistical way. The scatter in the relation may be explained in terms of the variations in the duration, intensity and even the sign of continental thermotectonic events in contrast to the simple situation (creation of new oceanic lithosphere at mid-ocean ridges) which prevails in the oceans. The scatter also is partially attributable to the large and laterally variable radiogenic component of heat flow on continents. For a province for which a heat flow-heat production relation has been established, much of the scatter in surface heat flow due to crustal radiogenic heat production versus age is eliminated by determining reduced heat flow (surface heat flow minus radiogenic component) as a function of tectonic age, but much scatter remains, and it is still not possible to establish a heat flux-age relation in a rigorous way. Primarily because of the spatial variability in radiogenic heat production, no single geotherm can be used to characterize the thermal regime of a stable continental terrane. Thus, while some sites on stable continental blocks may have a geotherm fortuitously similar to that for old ocean basins, there is no reason to expect that this will be true generally, and many stable continental terranes will be characterized by geotherms markedly different from the geotherm for old ocean basins.  相似文献   

8.
The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.  相似文献   

9.
The known high mobility of the Indian subcontinent during the period from 80 to 53 Ma has evoked considerable interest in recent times. It appears to have played an important role in shaping the subcontinental structures of western India and the adjoining Arabian Sea. During this period, a major catastrophic event took place in the form of Deccan volcanism, which coincides with the biological mass extinction at the K-T boundary, including the death of dinosaurs. The origin of Deccan volcanism is still being debated.Geophysically, western India and its offshore regions exhibit numerous prominent anomalies which testify to the abnormal nature of the underlying crust-lithosphere. In this work, we develop a two-dimensional structural model of these areas along two long profiles extending from the eastern basin of the Arabian Sea to about 1000 km inland. The model, derived from the available gravity data in the oceanic and continental regions, is constrained by seismic and other relevant information in the area, and suggests, for the first time, the presence of an extensive low-density (2.95–3.05 g/cm3) sub-crustal underplating. Such a layer is found to occur between depths of 11 and 20 km in the eastern basin of the Arabian Sea, and betweeen 45 and 60 km in the continental region where it is sandwiched in the lower lithosphere. The low density may have been caused as a result of serpentinization or fractionation of magma by a process related in some way to the Deccan volcanic event. Substantial depletion of both oceanic and continental lithosphere is indicated. We hypothesize that the present anatomy of the deformed lithosphere of the region at the K-T boundary is the result of substantial melt generated owing to frictional heat possibly giving rise to a hot cell like condition at the base of the lithosphere, resulting from the rapid movement of the Indian subcontinent between 80 and 53 Ma.  相似文献   

10.
We have studied the problem concerning the onset of convective instabilities below the oceanic lithosphere. A system of linear partial differential equations, in which the background temperature field is time-dependent, is integrated in time to monitor the evolution of incipient disturbances. Two types of rheologies have been examined. One depends strongly on temperature. The other involves a viscosity which is both temperature- and pressure-dependent. The results from this initial-value approach, in which the viscosity profiles migrate downward with time, reveal the importance of considering temperature- and pressure-dependent rheology in issues regarding the development of local instabilities in upper mantle convection. For temperature-dependent viscosity, viscosities of 0(1020P) are required to produce instabilities with growth-rates of 0(.1/Ma). In contrast, these same growth rates can be attained for a temperature- and pressure-dependent viscosity profile with a mean value close to 0(1020P) in the upper mantle, owing to the presence of a low viscosity zone, 0(1020P), existing right below the lithosphere. Unlike the results of temperature-dependent viscosity, whose growth-rates increase with time, the amplification of disturbances in a fluid medium with temperature- and pressure-dependent rheology reaches a maximum at an early age, < 50 Ma, and decreases thereafter with time. This suggests the potential importance played by initial disturbances in the evolution of the oceanic lithosphere.  相似文献   

11.
The cooling history and therefore thermal structure of oceanic lithosphere in slow-spreading environments is, to date, poorly constrained. Application of thermochronometric techniques to rocks from the very slow spreading SW Indian Ridge provide for the first time a direct measure of the age and thermal history of in situ lower oceanic crust. Crystallization of felsic veins (∼850°C) drilled in Hole 735B is estimated at 11.93±0.14 Ma, based on U-Pb analyses of zircon by ion probe. This crystallization age is older than the ‘crustal age’ from remanence inferred from both sea surface and near-bottom magnetic anomaly data gathered over Hole 735B which indicate magnetization between major normal polarity chrons C5n.2n and C5An.1n (10.949-11.935 Ma). 40Ar/39Ar analyses of biotite give plateau ages between 11 and 12 Ma (mean 11.42±0.21 Ma), implying cooling rates of >800°C/m.y. over the first 500,00 years to temperatures below ∼330-400°C. Fission-track ages on zircon (mean 9.35±1.2 Ma) and apatite reveal less rapid cooling to <110°C by ∼7 Ma, some 4-5 m.y. off axis.Comprehensive thermochronometric data from the structurally intact block of gabbro between ∼700 and 1100 m below sea floor suggest that crust traversed by ODP Hole 735B mimics conductive cooling over the temperature range ∼900-330°C, characteristic of a 2-D plate-cooling model for oceanic lithosphere. In contrast, lower temperature chronometers (fission track on zircon, titanite, and apatite; T≤280°C) are not consistent with these predictions and record anomalously high temperatures for crust >700 m below sea floor at 8-10 Ma (i.e. 2-4 m.y. off axis). We offer two hypotheses for this thermal anomaly:
(i)
Off-axis (or asymmetric) magmatism that caused anomalous reheating of the crust preserved in Hole 735B. This postulated magmatic event might be a consequence of the transtension, which affected the Atlantis II transform from ∼19.5 to 7.5 Ma.
(ii)
Late detachment faulting, which led to significant crustal denudation (2.5-3 km removed), further from the ridge axis than conventionally thought.
  相似文献   

12.
PP waves have been used to transform PP residuals with respect to Jeffreys-Bullen time into P-wave travel-time delays close to the reflection point. It is found that P-wave travel-time delays decrease with the age of the plate for oceanic structures. Average oceanic lithosphere (100 My) has a residual similar to that of a typical continental platform (Siberia). The absence of a P-wave low velocity zone under platform regions is sufficient to explain the small difference in residuals between old oceanic regions and the Siberian platform. Thus, from these observations, there is no evidence that would favour a substantial structural difference between continents and oceans at depths greater than 250 km.  相似文献   

13.
Analogue models are used to investigate extension of a continental lithosphere weakened by asthenospheric melts percolating through the upper mantle, a process that has been hypothesised to control the opening of the Ligurian Tethys. Models were performed in a centrifuge apparatus and reproduced, by using materials such as sand and viscous mixtures, extension of 60-km thick, three-layer continental lithosphere floating above the asthenosphere. The percolated lithospheric mantle was assumed to be characterised by a rheological behaviour similar to that of the asthenosphere. Two sets of experiments investigated the influence on deformation of (1) the thickness of the percolated mantle and the associated strength contrast between the normal and weakened lithosphere, and (2) the lateral width of the weakened zone. Model results suggest that mantle percolation by asthenospheric melts is able to promote strong localised thinning of the continental lithosphere, provided that a significant thickness of the lithospheric mantle is weakened by migrating melts within a narrow region. Strain localisation is maximised for percolation of the whole lithospheric mantle and strong strength contrast between the normal and weakened lithosphere. Under these conditions, the thickness of the lithosphere may be reduced to less than 12 km in 3 Ma of extension. Conversely, localised thinning is strongly reduced if the thickness of the percolated zone is ≤1/3 of the thickness of the whole lithospheric mantle and/or the lithosphere is weakened over wide regions. Overall, model results support the working hypothesis that mantle percolation by asthenospheric melts is a controlling factor in the transition from distributed continental deformation to localised oceanic spreading.  相似文献   

14.
Seabeam mapping and detailed geophysical surveying have been conducted over the Nankai Trough where the fossil Shikoku Ridge is subducted below southwest Japan. The geometry of the oceanic lithosphere bending under the margin as well as the three-dimensional structure of the accretionary prism have thus been determined in detail. Three 350° trending, probably transform faults have been identified in the area of the survey. They do not extend further south and appear to be limited to the last phase of spreading within the Shikoku Basin, probably between 15 and 12 Ma; this last phase of spreading would then have been accompanied by a sharp change in spreading direction from east-west to N 350°. The two eastern transform faults limit a zone of reduced Nankai trench fill of turbidites opposite to the Tosa Bae Embayment. This observation suggests that the Tosa Bae Embayment actually results from this reduced supply of trench fill to the imbricate thrusting process. The accretionary prism can be divided into three different tectonic provinces separated by continuous mappable thrusts, the Lower and Upper Main Thrusts. Surface shortening is limited to the lower accretionary prism south of the Upper Main Thrust (UMT) whereas uplift with possible extension characterizes the prism above the UMT. Deformation, due to the relative plate motion, mostly affects the lower accretionary prism south of the UMT.  相似文献   

15.
The Cache Creek terrane (CCT) of the Canadian Cordillera consists of accreted seamounts that originated adjacent to the Tethys Ocean in the Permian. We utilize Potential Translation Path plots to place quantitative constraints on the location of the CCT seamounts through time, including limiting the regions within which accretion events occurred. We assume a starting point for the CCT seamounts in the easternmost Tethys at 280 Ma. Using reasonable translation rates (11 cm/a), accretion to the Stikinia–Quesnellia oceanic arc, which occurred at about 230 Ma, took place in western Panthalassa, consistent with the mixed Tethyan fauna of the arc. Subsequent collision with a continental terrane, which occurred at about 180 Ma, took place in central Panthalassa, > 4000 km west of North America yielding a composite ribbon continent. Westward subduction of oceanic lithosphere continuous with the North American continent from 180 to 150 Ma facilitated docking of the ribbon continent with the North American plate.The paleogeographic constraints provided by the CCT indicate that much of the Canadian Cordilleran accretionary orogen is exotic. The accreting crustal block, a composite ribbon continent, grew through repeated collisional events within Panthalassa prior to docking with the North American plate. CCT's odyssey requires the presence of subduction zones within Panthalassa and indicates that the tectonic setting of the Panthalassa superocean differed substantially from the current Pacific basin, with its central spreading ridge and marginal outward dipping subduction zones. A substantial volume of oceanic lithosphere was subducted during CCT's transit of Panthalassa. Blanketing of the core by these cold oceanic slabs enhanced heat transfer out of the core into the lowermost mantle, and may have been responsible for the Cretaceous Normal Superchron, the coeval Pacific-centred mid-Cretaceous superplume event, and its lingering progeny, the Pacific Superswell. Far field tensile stress attributable to the pull of the slab subducting beneath the ribbon continent from 180 to 150 Ma instigated the opening of the Atlantic, initiating the dispersal phase of the supercontinent cycle by breaking apart Pangea. Docking of the ribbon continent with the North American plate at 150 Ma terminated the slab pull induced stress, resulting in a drastic reduction in the rate of spreading within the growing Atlantic Ocean.  相似文献   

16.
New K/Ar dating and geochemical analyses have been carried out on the WNW–ESE elongated oceanic island of S. Jorge to reconstruct the volcanic evolution of a linear ridge developed close to the Azores triple junction. We show that S. Jorge sub-aerial construction encompasses the last 1.3 Myr, a time interval far much longer than previously reported. The early development of the ridge involved a sub-aerial building phase exposed in the southeast end of the island and now constrained between 1.32 ± 0.02 and 1.21 ± 0.02 Ma. Basic lavas from this older stage are alkaline and enriched in incompatible elements, reflecting partial melting of an enriched mantle source. At least three differentiation cycles from alkaline basalts to mugearites are documented within this stage. The successive episodes of magma rising, storage and evolution suggest an intermittent re-opening of the magma feeding system, possibly due to recurrent tensional or trans-tensional tectonic events. Present data show a gap in sub-aerial volcanism before a second main ongoing building phase starting at about 750 ka. Sub-aerial construction of the S. Jorge ridge migrated progressively towards the west, but involved several overlapping volcanic episodes constrained along the main WNW–ESE structural axis of the island. Mafic magmas erupted during the second phase have been also generated by partial melting of an enriched mantle source. Trace element data suggest, however, variable and lower degrees of partial melting of a shallower mantle domain, which is interpreted as an increasing control of lithospheric deformation on the genesis and extraction of primitive melts during the last 750 kyr. The multi-stage development of the S. Jorge volcanic ridge over the last 1.3 Myr has most likely been greatly influenced by regional tectonics, controlled by deformation along the diffuse boundary between the Nubian and the Eurasian plates, and the increasing effect of sea-floor spreading at the Mid-Atlantic Ridge.  相似文献   

17.
New paleomagnetic investigation was carried out on the late Neogene fluviolacustrine sequence of the Yuanmou Basin, located near the southeastern margin of the Tibetan Plateau. Magnetostratigraphic results indicate nine reverse magnetozones (R1 to R9) and eight normal magnetozones (N1 to N8) in the sedimentary profile, which can be correlated to the geomagnetic polarity timescale from C3n.3r to C1r.1r. The age of the sedimentary sequence of the Yuanmou Basin can thus be paleomagnetically constrained to an interval from early Pliocene to Pleistocene, with sedimentation rates varying from 12.5 to 55 cm/kyr. In addition to its highly resolved magnetostratigraphic sequence, the Yuanmou Basin provides a record of Plio-Pleistocene tectono- and climato-sedimentary processes. The mean declinations of the seventeen polarity units (excluding samples with transitional directions) can be grouped into three distinct directional intervals, Group I (2.58–1.37 Ma), Group II (4.29–2.58 Ma) and Group III (4.91–4.29 Ma). These directions indicate that the Yuanmou Basin has probably experienced vertical-axis clockwise rotation of about 12° from 1.4 Ma to 4.9 Ma, which may be related to slip activity of the Red River fault to the southwest and the Xianshuihe–Xiaojiang fault to the east.  相似文献   

18.
几乎所有大陆岩石层的减薄现象,可能都与海洋板块的俯冲作用相关,但是两者之间的内在联系迄今仍不十分明确,为此,我们设计了一系列包含洋-陆俯冲系统的二维数值模型,来探讨海洋板块的俯冲作用对上覆大陆岩石层变形行为的影响,尤其对大陆岩石层减薄效应的制约.模型结果表明,海洋板块俯冲过程中的地幔楔熔体对大陆岩石层地幔的热侵蚀以及由熔体上升所诱发的地幔局部对流的强烈扰动会导致上覆大陆岩石层的减薄效应.这种效应不仅表现在横向上的向陆内蔓延,还表现在垂向上的向浅部发展.且多类动力学参数都能制约大陆岩石层的减薄效应.具体地,随着汇聚速率和洋壳厚度的增加,上覆大陆岩石层在横向上的减薄范围越大,在垂向上的减薄程度也越深;而随着俯冲海洋板块年龄的增加,上覆大陆岩石层在横向上的减薄范围增大,但在垂向上的减薄程度会减小;随着上覆大陆岩石层厚度的增加,其横向减薄范围会减小,但在垂向上的减薄程度会加深.本文研究成果能为揭示华北克拉通减薄/破坏的动力学过程提供一定的理论参考依据.  相似文献   

19.
During late Mesozoic subduction of paleo‐Pacific lithospheric plates, numerous gold vein deposits formed in the Dabie–Sulu Belt of east‐central China plus its east‐Asian extensions, and in the Klamath Mountains plus Sierran Foothills of northern California. In eastern Asia, earlier transpression and continental collision at about 305–210 Ma generated a high pressure–ultrahigh pressure orogen, but failed to produce widespread intermediate to felsic magmatism or abundant hydrothermal gold deposits. Similarly in northern California, strike‐slip ± minor transtension–transpression over the interval of about 380–160 Ma resulted in the episodic stranding of oceanic terranes, but generated few granitoid magmas or Au ore bodies. However, for both continental margin realms, nearly head‐on Cretaceous destruction of oceanic lithosphere involved sustained underflow; reaching magmagenic depths of about 100 km, the descending mafic‐ultramafic plates dewatered, producing voluminous calc‐alkaline arc magmas. Ascent of these plutons into the middle and upper crust released CO2 ± S‐bearing aqueous fluids and/or devolatilized the contact‐metamorphosed wall rocks. Such hydrothermal fluids transported gold along fractures and fault zones, precipitating it locally in response to cooling, fluid mixing, and/or reactions with wall rocks of contrasting compositions (e.g. serpentinite, marble). In contrast, where sialic crust was subducted to depths of about 100 km, only minor production of granitoid melts occurred, and few major coeval Au vein deposits formed. The mobilization of precious metal‐bearing fluids in continental margin and island arc environments apparently requires long‐continued, nearly orthogonal descent of oceanic, not continental, lithosphere.  相似文献   

20.
In a general lithospheric model of a simple divergent ocean and continental margin that satisfies the constraints of isostasy and gravity anomalies, the free-air gravity anomaly at the margin is modelled by an oceanic crust that thickens exponentially toward the margin from its common value of 6.4 km about 600 km from the margin to 17.7 km at the margin; this postulated thickening is supported empirically by seismic refraction measurements made near continental margins. The thickness of the oceanic crust matches that of the continental lithosphere at breakup, as observed today in Afar and East Africa, and is interpreted as the initial oceanic surface layer chilled against the continental lithosphere. With continued plate accretion, the chilled oceanic crust thins exponentially to a steadystate thickness, which is achieved about 40 m.y. after breakup. These findings contrast with the generally held view that the oceanic crust has a uniform thickness.During the first 40 m.y. of spreading, the thicker oceanic crust, of density 2.86 g/cm3, displaces the denser (3.32 g/cm3) subjacent material; by isostasy, the spreading ridge and the rest of the seafloor thus stand higher in younger( <40m.y.) oceans than they do in older(>40m.y.) oceans. This is postulated to be the cause of the empirical relationship between the crestal depth of spreading ridges and the age (or half-width) of ocean basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号