首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The payload of Equator-S was complemented by the potential control device (PCD) to stabilise the electric potential of the spacecraft with respect to the ambient plasma. Low potentials are essential for accurate measurements of the thermal plasma. The design of PCD is inherited from instruments for Geotail and Cluster and utilises liquid metal ion sources generating a beam of indium ions at several keV. The set-up of the instrument and its interaction with the plasma instruments on board is presented. When the instrument was switched on during commissioning, unexpectedly high ignition and operating voltages of some ion emitters were observed. An extensive investigation was initiated and the results, which lead to an improved design for Cluster-II, are summarised. The cause of the abnormal behaviour could be linked to surface contamination of some emitters, which will be monitored and cured by on-board procedures in future. The mission operations on Equator-S were not at all affected, because of the high redundancy built into the instrument so that a sufficient number of perfectly operating emitters were available and were turned on routinely throughout the mission. Observations of the effect of spacecraft potential control on the plasma remained limited to just one event on January 8, 1998, which is analysed in detail. It is concluded that the ion beam lead to the predicted improvement of the particle measurements even outside the low density regions of the magnetosphere where the effect of spacecraft potential control would have been much more pronounced, and that the similar instruments for the four Cluster-II spacecraft to be launched in 2000 will be very important to ensure accurate plasma data from this mission.  相似文献   

2.
We present the first electron time-of-flight measurements obtained with the Electron Drift Instrument (EDI) on Equator-S. These measurements are made possible by amplitude-modulation and coding of the emitted electron beams and correlation with the signal from the returning electrons. The purpose of the time-of-flight measurements is twofold. First, they provide the drift velocity, and thus the electric field, when the distance the electrons drift in a gyro period becomes sufficiently large. Second, they provide the gyro time of the electrons emitted by the instrument, and thus the magnitude of the ambient magnetic field, allowing in-flight calibration of the flux-gate magnetometer with high precision. Results of both applications are discussed.  相似文献   

3.
Observations of a flux transfer event (FTE) have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ≈226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF) which is estimated to have reached the subsolar magnetopause ≈77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole) is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.  相似文献   

4.
We present the first triangulation measurements of electric fields with the electron drift instrument (EDI) on Equator-S. We show results from five high-data-rate passes of the satellite through the near-midnight equatorial region, at geocentric distances of approximately 5–6 RE, during geomagnetically quiet conditions. In a co-rotating frame of reference, the measured electric fields have magnitudes of a few tenths of mV/m, with the E × B drift generally directed sunward but with large variations. Temporal variations of the electric field on time scales of several seconds to minutes are large compared to the average magnitude. Comparisons of the “DC” baseline of the EDI-measured electric fields with the mapped Weimer ionospheric model and the Rowland and Wygant CRRES measurements yield reasonable agreement.  相似文献   

5.
An electrostatic analyser (ESA) onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD) has obtained the first accurate electron energy spectrum with energies &7 eV-100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies &20–300 keV). The high time resolution (3 s) data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies &7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to &6Re. Pitch-angle distributions of &20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.  相似文献   

6.
Magnetic field measurements, taken by the magnetometer experiment (MAM) on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped) magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft are analysed to confirm boundary orientation and motion. These further show evidence of an anti-sunward moving depression on the magnetopause (which is much smaller at Equator-S). The Tsyganenko model field is used routinely to assist in categorising the crossings and some comparison of models is carried out. We note that typically the T87 model fits the data better than the T89 model during conditions of low to intermediate Kp index near the magnetopause and also near the dawn-side tail current sheet in the dawnside region.  相似文献   

7.
For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3/2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.  相似文献   

8.
Using the Equator-S spacecraft and SuperDARN HF radars an extensive survey of bursty reconnection at the magnetopause and associated flows in the polar ionosphere has been conducted. Flux transfer event (FTE) signatures were identified in the Equator-S magnetometer data during periods of magnetopause contact in January and February 1998. Assuming the effects of the FTEs propagate to the polar ionosphere as geomagnetic field-aligned-currents and associated Alfveén-waves, appropriate field mappings to the fields-of-view of SuperDARN radars were performed. The radars observed discrete ionospheric flow channel events (FCEs) of the type previously assumed to be related to pulse reconnection. Such FCEs were associated with 80% of the FTEs and the two signatures are shown to be statistically associated with greater than 99% confidence. Exemplary case studies highlight the nature of the ionospheric flows and their relation to the high latitude convection pattern, the association methodology, and the problems caused by instrument limitations.  相似文献   

9.
The advent of missions comprised of phased arrays of spacecraft, with separation distances ranging down to at least mesoscales, provides the scientific community with an opportunity to accurately analyse the spatial and temporal dependencies of structures in space plasmas. Exploitation of the multi-point data sets, giving vastly more information than in previous missions, thereby allows unique study of their small-scale physics. It remains an outstanding problem, however, to understand in what way comparative information across spacecraft is best built into any analysis of the combined data. Different investigations appear to demand different methods of data co-ordination. Of the various multi-spacecraft data analysis techniques developed to affect this exploitation, the discontinuity analyser has been designed to investigate the macroscopic properties (topology and motion) of boundaries, revealed by multi-spacecraft magnetometer data, where the possibility of at least mesoscale structure is considered. It has been found that the analysis of planar structures is more straightforward than the analysis of non-planar boundaries, where the effects of topology and motion become interwoven in the data, and we argue here that it becomes necessary to customise the analysis for non-planar events to the type of structure at hand. One issue central to the discontinuity analyser, for instance, is the calculation of normal vectors to the structure. In the case of planar and ‘thin’ non-planar structures, the method of normal determination is well-defined, although subject to uncertainties arising from unwanted signatures. In the case of ‘thick’, non-planar structures, however, the method of determination becomes particularly sensitive to the type of physical sampling that is present. It is the purpose of this article to firstly review the discontinuity analyser technique and secondly, to discuss the analysis of the normals to thick non-planar structures detected in magnetometer data.  相似文献   

10.
The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5°.  相似文献   

11.
Data from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03–04 MLT) at a radial distance of 10–11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20−04 MLT), on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2–5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet.  相似文献   

12.
The satellite INTERBALL-2 has an orbit with high inclination (62.8°), covering the altitude range between a few hundred and about 20000 km. The ambient plasma conditions along this orbit are highly variable, and the interactions of this plasma with the spacecraft body as well as the photo-electron sheath around it are considered to be interesting topics for detailed studies. The electric potential of the spacecraft with respect to the ambient plasma that develops as a result of the current equilibrium reacts sensitively to variations of the boundary conditions. The measurement and eventual control of this potential is a prerequisite for accurate measurements of the thermal plasma. We describe the purpose and technical implementation of an ion emitter instrument on-board INTERBALL-2 utilising ion beams at energies of several thousand electron volts in order to reduce and stabilise the positive spacecraft potential. First results of the active ion beam experiments, and other measures taken on INTERBALL-2 to reduce charging are presented. Furthermore, the approach and initial steps of modelling efforts of the sheath in the vicinity of the INTERBALL-2 spacecraft are described together with some estimates on the resulting spacecraft potential, and effects on thermal ion measurements. It is concluded that even moderate spacecraft potentials as are commonly observed on-board INTERBALL-2 can significantly distort the measurements of ion distribution functions, especially in the presence of strongly aniso-tropic distributions.  相似文献   

13.
The MEMO (MEsure Multicomposante des Ondes) experiment is a part of theINTERBALL 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in three frequency bands: ELF (5–1000 Hz), VLF (1–20 kHz), LF (20–250 kHz). Preliminary analyses of low and high resolution data are presented. The emphasis is put on the estimation of the propagation characteristics of the observed waves. VLF hiss emissions are shown to be mainly whistler mode emissions, but other modes are present. An accurate estimation of the local plasma frequency is proposed when the low L = 0 cutoff frequency is identified. AKR emissions observed just above source regions are studied. R-X and L-O modes are found: the first at the lowest frequencies and the second at the highest. Both propagate with wave normal directions weakly oblique or quasi-parallel to the Earths magnetic field direction. Propagation characteristics are also determined for a (non-drifting) fine structure of AKR. There is no fundamental difference with structurless events. Night-side and dayside bursts of ELF electromagnetic emissions are presented. It is not clear whether the two emissions belong to the lion roar emissions or not.  相似文献   

14.
The Equator-S magnetometer is very sensitive and has a sampling rate normally of 128 Hz. The high sampling rate for the first time allows detection of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dawnside magnetosphere. The characteristics of these waves are virtually identical to the lion roars typically seen at the bottom of the magnetic troughs of magnetosheath mirror waves. The magnetospheric lion roars are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.2 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is nearly always smaller than 1°.  相似文献   

15.
A 16 mHz Pc4 pulsation was recorded on March 17, 1998, in the prenoon sector of the Earths magnetosphere by the Equator-S satellite. The event is strongly localized in radial direction at approximately L = 5 and exhibits properties of a field line resonance such as an ellipticity change as seen by applying the method of the analytical signal to the magnetic field data. The azimuthal wave number was estimated as m 150. We discuss whether this event can be explained by the FLR mechanism and find out that the change in ellipticity is more a general feature of a localized Alfvén wave than indicative of a resonant process.  相似文献   

16.
High-beta plasma blobs in the morningside plasma sheet   总被引:1,自引:0,他引:1  
Equator-S frequently encountered, i.e. on 30%0of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these “plasma blobs” and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena (<15°). They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.  相似文献   

17.
Ionospheric conductivity is not very easily measured directly. Incoherent scatter radars perhaps offer the best method but can only measure at one point in the sky at any one time and are limited in their time resolution. Statistical models of average conductivity are available but these may not be applied to individual case studies such as substorms. There are many instances where a real-time estimate of ionospheric conductivity over a large field-of-view is highly desirable at a high temporal and spatial resolution. We show that it is possible to make a reasonable estimate of the noctural height-integrated Pedersen conductivity, or conductance, with a single all-sky TV camera operating at 557.7 nm. This is not so in the case of the Hall conductance where at least two auroral wavelengths should be imaged in order to estimate additionally the energy of the precipitating particles.  相似文献   

18.
Simultaneous observations of the slow solar wind off the southeast limb of the Sun were made in May 1999 using optical measurements from the C2 and C3 LASCO coronagraphs on board the SOHO spacecraft and radio-scattering measurements from the MERLIN and EISCAT facilities. The observations show the slow solar wind accelerating outwards from 4.5 solar radii (R), reaching a final velocity of 200–300 km s-1 by 25–30 R. The acceleration profile indicated by these results is more gentle than the average profile seen in earlier LASCO observations of larger scale features, but is within the variation seen in these studies.  相似文献   

19.
SPEAR is a new polar cap HF radar facility which is to be deployed on Svalbard. The principal capabilities of SPEAR will include the generation of artificial plasma irregularities, operation as an all-sky HF radar, the excitation of ULF waves, and remote sounding of the magnetosphere. Operation of SPEAR in conjunction with the multitude of other instruments on Svalbard, including the EISCAT Svalbard radar, and the overlap of its extensive field-of-view with that of several of the HF radars in the SuperDARN network, will enable in-depth diagnosis of many geophysical and plasma phenomena associated with the cusp region and the substorm expansion phase. Moreover, its ability to produce artificial radar aurora will provide a means for the other instruments to undertake polar cap plasma physics experiments in a controlled manner. Another potential use of the facility is in field-line tagging experiments, for coordinated ground-satellite experiments. Here the scientific objectives of SPEAR are detailed, along with the proposed technical specifications of the system.  相似文献   

20.
We report on the comparison of winds measured by a medium frequency (MF) radar near Christchurch, New Zealand, and by the high resolution doppler imager (HRDI). Previous comparisons have demonstrated that there can be significant differences in the winds obtained by the two techniques, and our results are no different. However, these data show relatively good agreement in the meridional direction, but large differences in the zonal direction, where the radar is regularly measuring the zonal wind as too easterly. To do the comparison, overpasses from the satellite must be obtained when it is close to the radar site. The radar data are averaged in time around the overpass because we know the radars sample phenomena which have spatial and temporal scales which make them invisible to HRDI. There are a limited number of overpass comparisons which limit our confidence in these results, but a detailed analysis of these data show that the proximity of the overpass is often an important factor in the differences obtained. Other factors examined include the influence of the local time of the overpass, and the amount of radar data averaged around the overpass time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号