共查询到20条相似文献,搜索用时 0 毫秒
1.
The wavelengths and intensities of the stronger transitions in the spectrum of Ni xix are reduced from measurements of the X-ray spectra of three coronal active regions. The new measured wavelengths are consistent with prediction by isoelectronic extrapolation from the wavelengths of well established transitions but are about 0.01 Å longer than previously accepted laboratory measurements. This difference appears to be crucial to the correct assignment of features in the coronal spectrum to Ni xix. The relative intensities of our new assignments to Ni xix are in broad agreement with the Loulergue-Nussbaumer calculations. 相似文献
2.
An improved value of coronal temperature is obtained by the degree of ionization method taking various processes into consideration. Comparison with some of the existing results has also been made. 相似文献
3.
A. Abrami 《Solar physics》1970,11(1):104-116
Three solar outbursts which show pulsating radio emissions at metric waves (239 MHz) are examined. The behaviour of the single frequency, high-time resolution records and the spectral diagrams seem to indicate that such phenomena are peculiar phases of type IV radiation, perhaps connected with absorptions in the solar corona. The spectral analysis of the low-frequency modulation of the emissions show a very definite spectral line with a period ranging from 1s.7 to 3s.1. 相似文献
4.
S. Krucker M. Battaglia P. J. Cargill L. Fletcher H. S. Hudson A. L. MacKinnon S. Masuda L. Sui M. Tomczak A. L. Veronig L. Vlahos S. M. White 《Astronomy and Astrophysics Review》2008,16(3-4):155-208
This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration. 相似文献
5.
A. Sauval 《Solar physics》1968,3(1):89-105
In order to obtain a better agreement between observed and computed values of the solar intensity, an improved temperature distribution is deduced for the range 0.02<0< 10. The intensity observations here considered refer to the wavelength region between 1980 and 129 500, and the center-limb variations generally go down to cos = 0.1. The improved model, given in Figure 4 and Table II, differs rather little from the Utrecht 1964 model, used here as a reference.It appears necessary to introduce an empirical correction function to be applied to the continuous absorption coefficient. This function was derived for the spectral region between 2000 and 130000 Å; it is shown in Figure 5.Furthermore, an extension of the model (1.10–7<0< 2.10–2) is deduced (see Table III and Figure 8), which reasonably well represents the observations of the ultraviolet solar flux (
900–1700 Å). 相似文献
6.
Y. C. Whang 《Solar physics》1983,88(1-2):343-358
A one-fluid model is employed to study the global expansion of the solar wind from a two-hole corona, under the assumptions that the holes are confined to polar caps within 30° of heliographic colatitude, the flow is steady and axisymmetric, and the geometry of streamlines is prescribed. The boundary conditions are adjusted in such a way that the calculated solar wind properties at 1 AU are in a reasonable agreement with observational results. A series of numerical solutions are obtained, the series produces a maximum terminal speed of 829 km s?1 at the pole. The calculated solar wind speeds are strongly latitude dependent and are positively correlated with local divergence factor of a stream tube. The solutions imply that most plasma properties are highly inhomogeneous at the polar caps. The flow velocity, the temperature, the proton number flux and the conduction heat flux all increase towards the hole center. 相似文献
7.
N. D'Angelo 《Solar physics》1969,7(2):321-328
The suggestion is advanced that heating of the solar corona results from Landau damping of ion-acoustic waves generated in the motion of photospheric granules. Laboratory experiments relevant to the question of corona heating are discussed, together with the available observational information on the extent of energy deposition in the corona.Of the European Space Research Organization (ESRO). 相似文献
8.
J. David Bohlin 《Solar physics》1971,18(3):450-457
Two-dimensional isophotes of the extreme solar corona (r
max 45 R
) have been derived from integrated vidicon pictures taken from the Moon's surface by the unmanned probes Surveyors 6 and 7. These data were calibrated through use of previously published values for the coronal brightness gradient along the ecliptic. The resulting structure of the outer corona is compared to ground-based observations of the innermost corona 1.125 r/R
2.0 made by the High Altitude Observatory K-coronameter. The possible existence of a streamer seen by Surveyor 7 is analyzed over the region 15 r 22.5 R
. 相似文献
9.
W. Thomas Vestrand 《Solar physics》1988,118(1-2):95-121
The properties of solar flare continuum emission at energies >300 keV are discussed. Emphasis is placed on observations made during the 21st Solar Maximum by -ray detectors aboard the Solar Maximum Mission and Hinotori satellites. The statistical properties of high-energy flares are presented, including their size-frequency distribution, spectral-index distribution, position distribution, and associated soft X-ray size. The temporal structure of the high-energy continuum is reviewed as well as attempts to model the structure by two-step acceleration and particle trapping. Evidence for the directivity of flare radiation is presented and statistical and stereoscopic analysis techniques are compared and contrasted. The first observations of flare -rays at energies > 10 MeV are examined. We show that the very high-energy emission must be a mixture of pion-decay radiation and primary electron bremsstrahlung. Finally, we present high-energy observations from the extended phase of the giant 3 June, 1982 flare which seem to require a new acceleration component. 相似文献
10.
Richard Woo 《Astrophysics and Space Science》1996,243(1):97-104
Since the 1950s, a wide variety of radio observations based on scattering by electron density fluctuations in the solar wind has provided much of our information on density fluctuations and solar wind speed near the source region of the solar wind. This paper reviews recent progress in the understanding of the nature of these density fluctuations and their relationship to features on the Sun. The results include the first measurements of fine-scale structure within coronal streamers and evidence for structure in solar wind speed in the inner corona. 相似文献
11.
The variation in intensity of the solar X-ray resonance (1s
2
1
S
0 - 1s2p
1
P
1), intercombination (1s
2
1
S
0 - 1s2p
3
P
1), and forbidden (1s2
1
S
0 - 1s2s
3
P
1) lines of helium-like Ovii with 2800 MHz solar radio flux is presented for three solar rotations. A high correlation (r 0.80) exists between the intensities of all three X-ray lines and the 2800 MHz solar flux. The ratio of the forbidden to the intercombination line intensities is found to be essentially independent of long term solar activity. This ratio is used to determine upper limits on the coronal electron density and to make inferences concerning the change in density with solar activity. 相似文献
12.
The polarimetric survey of electrons in the K-corona initiated at Pic-du-Midi and Meudon Observatories in 1964 now covers a full solar cycle of activity. The measurements are photometrically calibrated in an absolute scale.In June 1967 a persistent coronal feature was fan-shaped as a lame coronale above quiescent prominences. We deduce an electron density of N
0 = 1.5 × 108 at 60 000 km above the photosphere, a total number of 14 × 1039 electrons, a hydrostatic temperature of 1.7 × 106 K, and a total thermal energy 3N
eKT = 1.0 × 1031 ergs. When a center of activity appeared, a major localized condensation developed to replace the old elongated feature, with N
0 = 4.5 × 108, a total of 4.5 × 1039 electrons and the same temperature of 1.7 × 106 K.Also, a fan-shaped feature of exceptional intensity was analysed on 8 September 1966, with N
0 = 6 × 108 and a total of 24 × 1039 electrons.Fan-shaped features are frequent above quiescent prominences. They degenerate above a height of 2R
into thinner isolated columns or blades with temperatures also around 1.7 × 106 K. 相似文献
13.
We discuss a model for the formation of the chromospheric Ca ii K line which does not make the usual assumption of complete redistribution. Using a physically reasonable scattering model, we find significant departures due to the frequency dependence of the line source function, particularly in the relative intensity and centre-to-limb behaviour of the K1 parts of the line and in the asymmetry produced by differential velocity fields. We conclude that the frequency dependence of the K line source function must be considered in quantitative models for the formation of the K line. 相似文献
14.
During a balloon flight in France on September 13, 1971, at altitude 32 000 m, the solar corona was cinematographed from 2 to 5R
during 5 hr, with an externally occulted coronagraph.Motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few 10 km s–1; several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces.Intensity and polarization measurements give the electron density with height in the quiet corona above the equator. Electron density gradient for one of the streamers gives a temperature of 1.6 × 106 K and comparisons with the on-board Apollo 16 coronal observation of 31 July, 1971 are compatible with the extension of this temperature up to 25 R
bd.Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry and ground-based K coronametry. Three of the four coronal streamers analysed have their axis bent with height towards the direction of the solar rotation, as if the upper corona has a rotation slightly faster than the chromosphere. 相似文献
15.
The scattering of radiowaves in the outer solar corona is discussed. Results are given of the decametric wave observations.
In the theoretical analysis both regular refraction and the gradients in the electron density fluctuations are considered.
The theory is in satisfactory agreement with the experimental data. From their comparison the ratio n=(l
r
/l
t
) is deduced of the correlation scales in the radial (l
r
)and transverse directions. This value is not equal to the ratio of the observed distribution dimensions. The frequency dependence
of the angular spectrum rms width is not λ2 at longer wavelengths. At small separations from the Sun, however, the rms angular size cannot serve as the only characteristic
of the spectrum, the latter being non-Gaussian.
Referred to in the paper as the Ukr. IRE. 相似文献
16.
《天文和天体物理学研究(英文版)》2016,(12)
The global structure of the solar corona observed in the optical window is governed by the global magnetic field with different characteristics over a solar activity cycle. The Ludendorff flattening index has become a popular measure of global structure of the solar corona as observed during an eclipse. In this study, 15 digital images of the solar corona from 1991 to 2016 were analyzed in order to construct coronal flattening profiles as a function of radius. In most cases, the profile can be modeled with a 2nd order polynomial function so that the radius with maximum flattening index(Rmax) can be determined. Along with this value, Ludendorff index(a + b) was also calculated. Both Ludendorff index and Rmax show anti-correlation with monthly sunspot number, though the Rmax values are more scattered. The variation in Rmax can be regarded as the impact of the changing coronal brightness profile over the equator. 相似文献
17.
The profiles of the Fe xiv, 5303, and Fe x, 6374, emission lines of the solar corona have been observed at different positions using a photoelectric scanning Fabry-Perot interferometer. These profiles were obtained during the eclipse of 7th March 1970, in Mexico and at the Pic-du-Midi coronagraph in October, 1970. The half-widths of these profiles were determined for both the coronal lines and temperatures were derived from these widths. No systematic temperature variation was discovered, however there was some suggestion of the existence of a fluctuation with time in the width of the emission lines. 相似文献
18.
A series of spectrograms of the inner solar corona were obtained at the total solar eclipse of 30 May 1965 using a fast spectrograph with a circular slit that recorded the spectrum from 3000 to 9000 at all position angles around the limb simultaneously. In this paper absolute intensity is given as a function of position angle for the stronger lines and the continuum. In the coronal enhancement or condensation centered at heliocentric position angle 293°, absolute intensity is given for 34 forbidden emission lines and the continuum. 相似文献
19.
A model of heating of the solar corona is proposed using electron-cyclotron resonance heating. 相似文献
20.
The heating of the solar corona has been a fundamental astrophysical issue for over sixty years. Over the last decade in particular, space-based solar observatories (Yohkoh, SOHO and TRACE) have revealed the complex and often subtle magnetic-field and plasma interactions throughout the solar atmosphere in unprecedented detail. It is now established that any energy release mechanism is magnetic in origin - the challenge posed is to determine what specific heat input is dominating in a given coronal feature throughout the solar cycle. This review outlines a range of possible magnetohydrodynamic (MHD) coronal heating theories, including MHD wave dissipation and MHD reconnection as well as the accumulating observational evidence for quasi-periodic oscillations and small-scale energy bursts occurring in the corona. Also, we describe current attempts to interpret plasma temperature, density and velocity diagnostics in the light of specific localised energy release. The progress in these investigations expected from future solar missions (Solar-B, STEREO, SDO and Solar Orbiter) is also assessed.Received: 6 February 2003, Published online: 14 November 2003
Correspondence to: R. W. Walsh 相似文献