首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow structure of a swash event over a uniform slope is studied using a RANS-VOF numerical model coupled with a v2f turbulence closure. The model is compared with experimental data of recent laboratory experiments. The ability of the turbulence modelling for simulating swash flow and the evolution of the computed bed shear stress during run-up and run-down are investigated. The agreement between numerical results and measured data, such as water depth, depth-averaged velocity and bed shear stress is very good during run-up. Main discrepancies are found during run-down. The paper also examines the aeration of the water layer in the swash flow, taking advantage of the PLIC method for computing the air–water interfaces. Air is continuously entrapped in the swash front and released at its rear during run-up. A detailed analysis indicates that the flow reversal is initiated near the bottom at the outer boundary of the swash zone and progresses landward. The study highlights the asymmetry between run-up and run-down. During run-up, the swash front propagation determines the turbulence properties and the bed shear stress profile on the beach, whereas the flow properties are more homogeneously distributed in the swash area during run-down.  相似文献   

2.
《Coastal Engineering》2005,52(1):1-23
We develop solutions for the transport of suspended sediment by a single swash event following the collapse of a bore on a plane beach, and we investigate the morphodynamical role that such transport may play. Although the intrinsic asymmetry between uprush and backwash velocities tends to encourage the export of sediment, we find that swash events may be effective in distributing across the swash zone much or all of the sediment mobilised by bore collapse; additionally, settling lag effects may promote a weak onshore movement of sediment. We quantify both effects in terms of the properties of the sediment and of the swash event, and comment on the relationship between our findings and recent field studies of swash zone sediment transport.  相似文献   

3.
本文提出海滩反递变纹层自下而上粒度由小到大,重矿物富集于纹层底部,它是前滨冲流“剪切分选”的产物。原生反递变纹层常被激浪破坏和再造,遇到后期加积海滩过程时,才能保存于海滩层理中。海滩层理的现场观测是研究海滩层理反递变纹层形成机理的重要方法之一。  相似文献   

4.
This paper describes newly obtained, high-frequency observations of beach face morphological change over numerous tidal cycles on a macrotidal sandy beach made using a large array of ultrasonic altimeters. These measurements enable the net cross-shore sediment fluxes associated with many thousands of individual swash events to be quantified. It is revealed that regardless of the direction of net morphological change on a tidal time scale, measured net fluxes per event are essentially normally distributed, with nearly equal numbers of onshore and offshore-directed events. The majority of swash events cause net cross-shore sediment fluxes smaller than ± 50 kg m− 1 and the mean sediment flux per swash event is only O(± 1 kg m− 1) leading to limited overall morphological change. However, much larger events which deposit or remove hundreds of kilograms of sand per meter width of beach occur at irregular intervals throughout the course of a tide. It was found that swash–swash interactions tend to increase the transport potential of a swash event and the majority of the swash events that cause these larger values of sediment flux include one or more interactions. The majority of the larger sediment fluxes were therefore measured in the lower swash zone, close to the surf/swash boundary where swash–swash interactions are most common. Despite the existence of individual swash events that can cause fluxes of sediment that are comparable to those observed on a tidal time scale, frequent reversals in transport direction act to limit net transport such that the beach face volume remains in a state of dynamic equilibrium and does not rapidly erode or accrete.  相似文献   

5.
New laboratory experiments have produced detailed measurements of hydrodynamics within swash generated by bore collapse on a steep beach. The experiments are based on a dambreak rig producing a highly repeatable, large-scale swash event, enabling detailed measurements of depths and velocities at a number of locations across the swash zone. Experiments were conducted on two beaches, differentiated by roughness. Results are presented for uprush shoreline motion, flow depths, depth-averaged velocity, velocity profiles and turbulence intensity. Estimates of the time- and spatially-varying bed shear stress are obtained via log-law fitting to the velocity profiles and are compared with the shear plate measurements of Barnes et al. (2009) for similar experimental conditions. Experimental results are compared with model predictions based on a NLSWE model with momentum loss parameterised using the simple quadratic stress law in terms of the depth-averaged velocity. Predicted and measured flow depths and depth-averaged velocities agree reasonably well for much of the swash period, but agreement is not good at the time of bore arrival and towards the end of the backwash. The parameterisation of total momentum loss via the quadratic stress law cannot adequately model the swash bed shear stress at these critical times.  相似文献   

6.
Hurricane- or storm-generated swell waves may cause erosion and deposition along coasts which are situated thousands of kilometers outside the generating wind field. Marked beach erosion, caused by such swell waves, was observed along the micro-tidal west coast of Aruba. During the process of erosion a swash bar was formed, which moved up-beach during the waxing part of the swell event. The swash bar welded to the beach during the waning part of the event. Rapid sedimentation occurred on the upper beach. Finally, recovery of the beach was observed. The formation of a swash bar was attributed to an erosive, dissipative interval of a normally accretionary reflective beach. The sedimentary structures, although generally in line with observations on other beaches, show several peculiar characteristics: (1) the great thickness of the laminae in these calcareous sands; (2) the succession of low-angle sigmoidal and tangential sets in the swash bar; (3) the relatively steep erosional lower set boundaries and the wedge-shaped lamination in the successive stages of beach recovery; and (4) the several types of deformation structures.  相似文献   

7.
8.
A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high-frequency bores and low-frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.  相似文献   

9.
金秉福 《海洋科学》1997,21(5):49-52
根据浅水波浪的底摩擦效应,对鲁南灵山湾和臼-岚山镇近岸区进行了波浪的海底摩擦力计算。波浪的海底摩擦力等值图与已知滨海锆石砂矿资料对比表明,底摩擦力大于0.18N/m^2的动力分选区有利于重矿物砂富集。据此,进一步预测了鲁南近岸带的砂矿富集区。  相似文献   

10.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   

11.
Outflows from estuaries potentially contribute to the productivity of adjacent coastal waters, although most previous work has been on estuaries with considerable river discharge. We investigated the influence of estuary outflow on aspects of coastal sediments adjacent to two seasonally intermittent estuaries, the Curdies and Anglesea Rivers, in southwest Victoria, Australia. For each estuary, we measured sediment organic matter, microphytobenthic chlorophyll a and microbial utilization of carbon sources at three locations associated with each estuary: (1) inside estuary mouth, (2) estuary swash and (3) control swash (an open beach distant from any estuarine influences). Sampling occurred one week before and at one and nine weeks after both an artificial mouth opening and a separate natural flood at both estuaries. Significant temporal changes were detected for all three variables at the estuary mouth and estuary swash but the direction of change was inconsistent across the two estuaries and between the artificial mouth opening and natural flood. Organic matter in both estuaries showed no difference after the artificial mouth openings. Only Anglesea showed an increase in organic matter in the estuary mouth and estuary swash after the floods. Microphytobenthic chlorophyll a concentrations were highest when the estuary mouths were closed. Concentrations decreased at all locations at Curdies after the mouth was artificially opened. The estuary mouth at Anglesea sustained high chlorophyll concentrations and the estuary swash increased one week post artificial opening. The flood event resulted in an increase in chlorophyll a at the estuary mouth and swash at both estuaries, one week post flood. At Curdies, the microbial utilization of different carbon sources changed after both mouth events; estuary mouth and estuary swash showed similar patterns at one and nine weeks post opening. At Anglesea, the bacteria utilized different carbon sources between locations and the only significant interaction between location and time was post flood with change in carbon sources utilized by bacteria in the estuary mouth and estuary swash for one and nine weeks post flood. The southern coastline of Australia is characterized by estuaries with small catchments. This study highlights the spatial and temporal variability in the effects of the output of relatively small, intermittent estuaries on coastal sediment of adjacent beaches, particularly during prolonged periods of drought.  相似文献   

12.
The bottom friction beneath random waves is predicted taking into account the effect of seepage flow. This is achieved by using wave friction factors for rough turbulent, smooth turbulent and laminar flow valid for regular waves together with a modified Shields parameter which includes the effect of seepage flow. Examples using data typical to field conditions are included to illustrate the approach. The analytical results can be used to make assessment of seepage effects on the bottom friction based on available wave statistics. Generally, it is recommended that a stochastic approach should be used rather than using the rms values in an otherwise deterministic approach.  相似文献   

13.
利用涌浪影响下短时段内的冲流带滩面高频高程数据和碎波带波流资料,在奇异谱分析(SSA)的基础上,以比研究了不同形态滩面的冲淤变化趋势、趋势分布形状、冲淤变化周期和冲淤变化强度,以及同一条剖面不同桩点间各因素间的变化关系;用交叉谱方法探索了每分钟滩面高频冲淤变化与碎波带长重力波间的作用关系.分析结果表明,滩角韵律地形引起的冲流分流作用促进了滩脊向滩谷的泥沙转运,冲流带滩面存在明显的长重力波频段的周期性冲淤振动,滩面冲淤振动强度由滩面下部向上部递减,碎波带长重力波对滩面高频冲淤变化起重要作用.  相似文献   

14.
《Coastal Engineering》2006,53(4):335-347
This paper investigates cross-shore profile changes of gravel beaches, with particular regard to discussing the tendency for onshore transport and profile steepening in the swash zone. The discussion includes observed morphological changes on a gravel beach from experimental investigations at the Large Wave Flume (GWK) in Hanover, Germany. During the tests all the profile changes occurred in the swash zone, resulting in erosion below the still water line (SWL) and formation of a berm above the SWL. We investigate the profile evolution evaluating the transport rates from a bed load sediment transport formulation coupled with velocities calculated from a set of Boussinesq equations that have been validated for its use in the surf and swash zones [Lynett, P.J., Wu, T.-R., and Liu, L.-F., P., 2002. Modelling wave runup with depth-integrated equations. Coastal Engineering, 46, 89–107; Otta, A.K., and Pedrozo-Acuña, A., 2004. Swash boundary and cross-shore variation of horizontal velocity on a slope. In: J.M. Smith (Editor), Proceedings 29th International Conference on Coastal Engineering. World Scientific, Lisbon, Portugal, pp. 1616–1628]. We discuss the influence of bottom friction on the predicted profiles, using reported friction factors from experimental studies. It is shown that the use of a different friction factor within a realistic range in each phase of the swash (uprush and backwash) improves prediction of the beach profiles, although quantitative agreement between the measured and computed profile evolutions is not satisfactory. Furthermore, if the friction factor and the transport efficiency (C) of the sediment transport formulation are kept the same in the uprush and backwash, accurate representation of profile evolution is not possible. Indeed, the features of the predicted profiles are reversed. However, when the C parameter is set larger during the uprush than during the backwash, the predicted profiles are closer to the observations. Differences between the predicted profiles from setting non-identical C-values and friction factors for the swash phase, are believed to be linked to both the infiltration effects on the flow above the beachface and the more accelerated flow in the uprush.  相似文献   

15.
《Coastal Engineering》2002,45(2):89-110
Experimental and numerical analyses have been used to assess the validity and potentialities of the integral swash zone model by Brocchini and Peregrine (Proc. Coastal Dynamics '95, ASCE 1 (1996) 221) which is extended to include seabed friction effects previously neglected. Applications of the model to experimental data show it represents a simple and useful tool for modelling swash zone flows. The model allows for computation of integral swash zone properties and shoreline motion from local variables defined at the seaward limit of the swash. For most properties, correlation between local and integral properties is very good (correlation coefficient about 0.80).A suitable parametric form of frictional forces in the swash zone is defined on the basis of both experimental data and analytical investigation. Numerical tests showed that the proposed parameterization models well integral frictional forces within the swash zone. The parametric friction force improves capabilities of the integral swash zone model of representing real swash motions. This is particularly evident when considering the momentum equation: the correlation coefficient between the rate of change of the onshore momentum in the swash zone and its forcings increases from about 0.85 to about 0.95 due to the inclusion of the seabed friction.  相似文献   

16.
《Coastal Engineering》1998,33(1):41-60
The purpose of this communication is to present the results of a series of laboratory experiments aimed at better understanding the dynamics of the motion of large bottom particles (cobbles) in a swash zone. In this region, a thin sheet of water that results from the collapse of a turbulent bore, runs up the beach and can induce the transport of relatively large solid objects in the on-shore direction. The aims of the study were to: (i) mimic this process in laboratory experiments and identify the associated physical processes involved; and (ii) to develop a suitable theoretical model to describe the motion of cobbles. The experiments employed a solid impermeable bottom and were conducted in a long tank of rectangular cross-section. An impulsive hydraulic bore, produced by a dam-break mechanism at one end of the tank, was used to simulate the water motion in the swash zone. Solid objects of simple discoid shape were used to model the cobbles. The results of the laboratory observations were compared with model predictions. In the range of external parameters used for the experiments (size and density of cobbles, propagation velocity and height of the water front, slope and friction at the bottom), a reasonable agreement between the measured and calculated values of the cobble displacement as a function of time was obtained.  相似文献   

17.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   

18.
Low-frequency waves in the surf and swash zones on various beach slopes are discussed using numerical simulations. Simulated surface elevations of both primary waves and low-frequency waves across the surf zone were first compared with experimental data and good agreement found. Low-frequency wave characteristics are then discussed in terms of their physical nature and their relationship to the primary wave field on a series of sea bottom slopes. Unlike primary waves, low-frequency wave energy increases towards the shoreline. Low-frequency waves in the surf and swash are a function of incident waves and the sea bottom slope and hence the saturation level of the surf zone. Wave energy on a gently sloping beach is dominated by low-frequency waves while primary waves play a significant role on a steep beach. Low-frequency wave radiation from the surf zone on a given beach depends on primary wave frequency and beach slope. However, a very poor correlation was found between surf similarity parameter and low-frequency wave radiation.  相似文献   

19.
The authors have previously determined that the effectiveness and failure pattern of the ice cover caused by flexural-gravity waves generated by a submerged body motion near the bottom ice can greatly depend on the depth of the water area. In its turn, the presence of a ledge on the ice surface may affect a wave propagation pattern. This paper presents an experimental study of the bottom contour influence on the deflection and length of flexural-gravity waves. The authors describe a numerical model for the analysis of the deformed state of ice caused by hydrodynamic loads due to a submarine motion, taking into account the bottom contour. The experiments are carried out in the ice tank. The results of calculations and experiments are compared.  相似文献   

20.
A new model for the boundary layer development and associated skin friction coefficients and shear stress within the swash zone is presented. The model is developed within a Lagrangian reference frame, following fluid trajectories, and can be applied to both laminar flow and smooth turbulent flow. The model is based on the momentum integral approach for steady, flat-plate boundary layers, with appropriate modifications to account for the unsteady flow regime and flow history. The model results are consistent with previous measurements of bed shear stress and skin friction coefficients within the swash zone. These indicate strong temporal and spatial variation throughout the swash cycle, and a clear distinction between the uprush and backwash phase. This variation has been previously attributed the unsteady flow regime and flow history effects, both of which are accounted for in the new model. Fluid particle trajectories and velocity are computed using the non-linear shallow water wave equations and the boundary layer growth across the entire swash zone is estimated. Predictions of the bed shear stress and skin friction coefficients agree reasonably well with direct bed shear stress measurements reported by Barnes et al. (Barnes, M.P., O’Donaghue, T., Alsina, J.M., Baldock, T.E., 2009. Direct bed shear stress measurements in bore-driven swash. Coastal Engineering 56 (8), 853–867) and, for a given flow velocity, give stresses which are consistent with the bias toward uprush sediment transport which has consistently been observed in measurements. The data and modelling suggest that the backwash boundary layer is initially laminar, which results in the late development of significant bed shear during the backwash, with a transition to a turbulent boundary layer later in the backwash. A new conceptual model for the boundary layer structure at the leading edge of the swash is proposed, which accounts for both the no-slip condition at the bed and the moving wet–dry interface. However, further development of the Lagrangian Boundary Layer Model is required in order to include bore-generated turbulence and to account for variable roughness and mobile beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号