共查询到9条相似文献,搜索用时 15 毫秒
1.
Dulce María Pérez-Romero Miguel Ortega-Sánchez Antonio Moñino Miguel A. Losada 《Coastal Engineering》2009
This work presents a simple method to evaluate the performance of a porous breakwater when it is impinged with normal incidence by a non-breaking monochromatic wave train. It is based on: 1) a potential flow model for wave interaction with permeable structures and 2) a set of experimental tests on a rectangular porous structure with uniform granular distribution. A characteristic friction diagram is obtained considering wave energy balance in a control volume, minimising the error between the numerical model and the experimental results for the wave transmission coefficient. Results show that, for large breakwater widths, the reflection process reaches a saturation regime before the waves exit the structure at a distance from the seaside between the interval 0.2 < x/L < 0.45. For larger breakwater widths, the reflection coefficient is almost constant (except for “resonant” conditions) and wave transmission decreases exponentially. Under such conditions, the wave propagation through the porous medium depends on the relative diameter D/L and the porosity of the material; the dependence on the relative breakwater width B/L and the ratio diameter wave height D/H is weak. This diagram intends to be useful for preliminary engineering studies of breakwater's efficiency and performance and as an adequate selection criteria of the experimental stone diameter to minimize scale effects in laboratory studies. 相似文献
2.
Wave interaction with a perforated wall breakwater with a submerged horizontal porous plate 总被引:1,自引:0,他引:1
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity. 相似文献
3.
A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves. 相似文献
4.
Numerical investigation on the dynamics of a vertical wall defenced by an offshore breakwater 总被引:1,自引:0,他引:1
The numerical and experimental investigations on the performance of an offshore-submerged breakwater in reducing the wave forces and wave run-up on vertical wall are presented. A two-dimensional finite-element model is employed to study the hydrodynamic performance of the submerged breakwater under the action of regular and random waves. The numerical prediction has been supported with experimental measurements. The wave forces and wave run-up on the vertical wall were measured for different breakwater configurations. The applicability of linear theoretical model in the prediction of wave forces on the wall by a submerged breakwater has been discussed. 相似文献
5.
极限波浪载荷是导致海上结构物疲劳失效的主要载荷之一。固定在海洋基础结构物上的直立开孔墙对减小波浪载荷具有一定的效果。基于不可压缩黏性流体流动理论和N-S方程,采用VOF与Level-set相结合追踪自由表面的方法,首先建立数值波浪水槽,然后对开孔墙本身的开孔率和开孔墙与直立墙之间的相对距离,在降低反射系数和波浪力两个方面进行分析。研究结果表明,开孔墙可以明显降低作用在结构物上的波浪力,开孔墙本身的开孔率和与直立墙的相对距离会对其产生明显影响;不同波浪参数下会存在一个最佳的开孔率,但是不同波浪参数时最佳开孔率会略有不同;当开孔墙和直立墙的相对距离在0.2到0.3之间时,开孔墙的消波减载效果最佳。研究结果可为海洋工程相关设计提供一定的参考。 相似文献
6.
双层局部开孔板沉箱对波浪反射的理论研究 总被引:1,自引:0,他引:1
提出了一种用于研究由双层开孔板和一个不透水后板的开孔结构对斜向波反射率的理论分析方法。整个流域被分成三个子域,在每个子域内应用特征函数展开法以得到该域内包含未知展开系数的势函数的表达式,在速度势的展开中,考虑了非传播模态波浪的影响。通过匹配开孔板处的边界条件可以求解待定的展开系数,继而求解双层开孔板防波堤结构对斜向波的反射率。数值计算结果与试验结果进行了比较,符合较好。并进一步讨论了几个重要因素对反射系数的影响。 相似文献
7.
The VOF method and the k–ε model, combined with the equation of state of air at constant temperature, have been used to calculate the total horizontal wave force caused by monochromatic waves acting on a perforated caisson with a top cover. From comparison of various parameters, such as the total horizontal force, the pressure difference on the front wall, the pressure on the back wall and the pressure on the top cover, between the numerical results and test data, it can be seen that the numerical results agree well with the test data. It is concluded that the method described in this paper can be utilized to calculate wave forces acting on perforated caissons with a top cover in the case of nonovertopping, nonbreaking waves. A simplified method to calculate the total horizontal force has been developed, based on test data, using a least-squares method. A comparison between the numerical results and the values calculated from the simplified equations shows good agreement. Therefore the simplified equations can be used in engineering applications to evaluate the total horizontal force on a perforated caisson with a top cover. 相似文献
8.
The present study investigates the combined wave field that is induced by the continuous interaction of plane waves with an array of truncated circular cylinders in front of a rigid wall. The long-term goal of the study is the investigation of possible increase in the efficiency of cylindrical Wave Energy Converters (WECs) by putting in the vicinity of the array a barrier to propagation, a wall, that could assist the reflection of the incoming waves. The main task is to develop a generic solution method that is free of conceptual simplifications employed, e.g. by the method of images and the assumption of “pure” wave reflection. To cope with the set task, the proposed method relies on the semi-analytical formulation of the velocity potentials, while the solution is sought by combined expressions that involve polar and elliptical harmonics. The wall is represented as an elliptical cylinder with zero semi-minor axis. This assumption has eventually a beneficial effect to the underlying formulation given that it simplifies significantly the expansions of the involved diffraction potentials. 相似文献
9.
To assist in the prototyping and controller design of point-absorber wave energy converters (WECs), an easy-to-implement hybrid integral-equation method is presented for computing the frequency-domain hydrodynamic properties of bodies with a vertical axis of symmetry in waves. The current hybrid method decomposes the flow domain into two parts: an inner domain containing the body and an outer domain extending to infinity. The solution in the inner domain is computed using the boundary-element method, and the outer-domain solution is expressed using eigenfunctions. Proper matching at the domain boundary is achieved by enforcing continuity of velocity potential and its normal derivative. Body symmetry allows efficient computation using ring sources in the inner domain. The current method is successfully applied to three different body geometries including a vertical truncated floating cylinder, the McIver toroid, and the coaxial-cylinder WEC being developed in the authors’ laboratory. In particular, the current results indicate that, by replacing the flat bottom of the coaxial-cylinder WEC with the Berkeley-Wedge (BW) shape, viscous effect can be significantly reduced with only minor negative impact on wave-exciting force, thus increasing WEC efficiency. Finally, by comparing to experimental measurements, the current method is demonstrated to accurately predict the heave added mass and wave-exciting force on the coaxial-cylinder WEC with BW geometry. If a viscous damping correction factor is used, the heave motion amplitude can also be accurately computed. 相似文献