首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and wave impacts cause unexpected damage to boat landing facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the pile and the maximum run-up height need to be known. This article describes a physical model study of the run-up heights and run-up distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. The influence of wave steepness, wave height and water depth on run-up is investigated. The measured run-up values are compared with applicable theories and previous experimental studies predicting run-up on a circular pile.  相似文献   

2.
A practical method for estimating the wave run-up height on a slender circular cylindrical foundation for wind turbines in nonlinear random waves is provided. The approach is based on the velocity stagnation head theory and Stokes second order wave theory by assuming the basic harmonic wave motion to be a stationary Gaussian narrow-band random process. Comparisons are made with measurements by De Vos et al. (2007), and some of the highest wave run-up events that were predicted agree with those measured.  相似文献   

3.
《Applied Ocean Research》2005,27(4-5):235-250
The present study describes an experimental investigation of breaking criteria of deepwater wind waves under strong wind action. In a wind wave flume, waves were generated using different wind speeds and measured at different locations to obtain wave trains of no, intermittent, or frequent breaking. Water particle movement and free surface elevation were measured simultaneously using a PIV system and a wave gauge, respectively. For wind waves, not all the waves measured at a fixed location are breaking waves, and the breaking of a larger wave is not guaranteed. However, the larger the wave height, the larger the probability of breaking. In order to take as many breaking waves as possible for the cases of frequent breaking, we used the waves whose heights were close to the highest one-tenth wave height. The experimental results showed that the geometric or kinematic breaking criteria could not explain the occurrence of breaking of wind waves. On the other hand, the vertical acceleration beneath the wave crest was close to the previously suggested limit value, −0.5g, when frequent breaking of large waves occurred, indicating that the dynamic breaking criterion would be good for discriminating breaking waves under a strong wind action.  相似文献   

4.
The run-up and back-wash processes of single and double solitary waves on a slope were studied experimentally. Experiments were conducted in three different wave flumes with four different slopes. For single solitary wave, new experimental data were acquired and, based on the theoretical breaking criterion, a new surf parameter specifically for breaking solitary waves was proposed. An equation to estimate maximum fractional run-up height on a given slope was also proposed. For double solitary waves, new experiments were performed by using two successive solitary waves with equal wave heights; these waves were separated by various durations. The run-up heights of the second wave were found to vary with respect to the separation time. Particle image velocimetry measurements revealed that the intensity of the back-wash flow generated by the first wave strongly affected the run-up height of the second wave. Showing trends similar to that of the second wave run-up heights, both the back-wash breaking process of the first wave and the reflected waves were strongly affected by the wave–wave interaction. Empirical run-up formula for the second solitary wave was also introduced.  相似文献   

5.
This paper describes the dispersal of droplets over breaking wind waves under the direct action of wind, based on a comparison between the actual distribution of droplet velocity and the wind field measured in a wind-wave tank (reference wind speed 16 m sec–1). The velocity distribution of droplets with a diameterd>0.81 mm over breaking wind waves was measured by Koga (1981). In this paper the wind field over breaking wind waves is measured by a flow visualization technique using styrofoam flakes as a tracer. The comparison allows a clear interpretation of droplet movement over the wave profile, and shows that the horizontal movement of the droplets ofd>0.81 mm is approximately determined by acceleration by the wind while their vertical movement is determined by acceleration due to gravity. These observations offer some support for the dispersion model proposed by Koga and Toba (1981).  相似文献   

6.
Reliable estimation of wave run-up is required for the effective and efficient design of coastal structures when flooding or wave overtopping volumes are an important consideration in the design process. In this study, a unified formula for the wave run-up on bermed structures has been developed using collected and existing data. As data on berm breakwaters was highly limited, physical model tests were conducted and the run-up was measured. Conventional governing parameters and influencing factors were then used to predict the dimensionless run-up level with 2% exceedance probability. The developed formula includes the effect of water depth which is required in understanding the influence of sea level rise and consequent changes of wave height to water depth ratio on the future hydraulic performance of the structures. The accuracy measures such as RMSE and Bias indicated that the developed formula is more accurate than the existing formulas. Additionally, the new formula was validated using field measurements and its superiority was observed when compared to the existing prediction formulas. Finally, the new design formula incorporating the partial safety factor was introduced as a design tool for engineers.  相似文献   

7.
The design of deep water offshore platforms requires the analysis of wave-structure interaction phenomena which have not been as critical for shallower water platform designs. In the case of tension leg platforms (TLPs) interaction phenomena such as wave run-up on the vertical legs and the amplification of the waves beneath the deck are major design considerations. The research investigation reported here focuses on a series of small scale wave tank tests on four column TLP models examining these phenomena. The role of vertical leg spacing and comparative tests of the TLP models with and without pontoons was investigated. As the vertical legs were moved closer an increase in wave run-up and a shifting of the incident wave period corresponding to the maximum wave upwelling were noted. Comparisons with wave measurements for single cylinders from previous experimental studies and the TLP configurations used in this study are presented. A design formula for estimating wave run-up on TLPs is suggested based upon these experiments. The wave run-up on a leg directly in the wake of another leg is presented. A comparison of the wave upwelling measurements with previously published numerical results are discussed. A wave uplift force model which allows for the inclusion of the experimentally obtained wave upwelling measurements is presented and discussed with regard to the design specification of platform deck elevation.  相似文献   

8.
Wind and wind-generated waves were measured in a wind-wave tank. A clear transition was found in the relation between the wind speed U 10 and the wind friction velocity u * near u * = 0.2 m/s, where U 10 is the wind speed at 10 m height extrapolated from the measured wind profile in a logarithmic layer, and u * = 0.2 m/s corresponds roughly to U 10 = 8 m/s in the present measurement. Quite a similar transition was found in the relation between the spectral density of high frequency wind waves and u *. These results suggest the existence of the critical wind speed for air–sea boundary processes, which was proposed by Munk (J Marine Res 6:203–218, 1947) more than half a century ago. His original idea of the critical wind speed was based on the discontinuities in such phenomena as white caps, wind stress, and evaporation, which commonly appear at a wind speed near 7 m/s. On the basis of the results of our present study and those of earlier studies, we discuss the phenomena which are relevant to the critical wind speed for the air–sea boundary processes. The conclusion is that the critical wind speed exists and it is attributed to the start of wave breaking rather than the Kelvin–Helmholtz instability, but the air–sea boundary processes are not discontinuous at a particular wind speed; because of the stochastic nature of breaking waves, the changes occur over a range of wind speeds. Detailed discussions are presented on the dynamical processes associated with the critical wind speed such as wind-induced change of sea surface roughness and high frequency wave spectrum. Future studies are required, however, to clarify the dynamical processes quantitatively. In particular, there is a need to further examine the gradual change of breaking patterns of wind waves with the increase of wind speed, and the associated change of the structure of the wind over wind waves, such as separation of the airflow at the crest of wind waves, the turbulent stress, and wave-induced stress. Studies on the dynamical structure of the high frequency wave spectrum are also needed.  相似文献   

9.
Breaking wave loads on coastal structures depend primarily on the type of wave breaking at the instant of impact. When a wave breaks on a vertical wall with an almost vertical front face called the “perfect breaking”, the greatest impact forces are produced. The correct prediction of impact forces from perfect breaking of waves on seawalls and breakwaters is closely dependent on the accurate determination of their configurations at breaking. The present study is concerned with the determination of the geometrical properties of perfect breaking waves on composite-type breakwaters by employing artificial neural networks. Using a set of laboratory data, the breaker crest height, hb, breaker height, Hb, and water depth in front of the wall, dw, from perfect breaking of waves on composite breakwaters are predicted using the artificial neural network technique and the results are compared with those obtained from linear and multi-linear regression models. The comparisons of the predicted results from the present models with measured data show that the hb, Hb and dw values, which represent the geometry of waves breaking directly on composite breakwaters, can be predicted more accurately by artificial neural networks compared to linear and multi-linear regressions.  相似文献   

10.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

11.
《Coastal Engineering》2006,53(1):39-48
This paper describes a simple method for modelling wave breaking over submerged structures, with the view of using such modelling approach in a coastal area morphodynamic modelling system.A dominant mechanism for dissipating wave energy over a submerged breakwater is depth-limited wave breaking. Available models for energy dissipation due to wave breaking are developed for beaches (gentle slopes) and require further modifications to model wave breaking over submerged breakwaters.In this paper, wave breaking is split into two parts, namely: 1) depth-limited breaking modelled using Battjes and Janssen's (1978) theory [Battjes, J.A. and Jannsen, J.P.F.M. (1978). Energy loss and setup due to breaking of random waves. Proceedings of the 16th Int. Conf. Coast. Eng., Hamburg, Germany, pp. 569-587.] and 2) steepness limited breaking modelled using an integrated form of the Hasselmann's whitecapping dissipation term, commonly used in fully spectral wind–wave models. The parameter γ2, governing the maximum wave height at incipient breaking (Hmax = γ2d) is used as calibration factor to tune numerical model results to selected laboratory measurements. It is found that γ2 varies mainly with the relative submergence depth (ratio of submergence depth at breakwater crest to significant wave height), and a simple relationship is proposed. It is shown that the transmission coefficients obtained using this approach compare favourably with those calculated using published empirical expressions.  相似文献   

12.
Infra-gravity wave generation by the shoaling wave groups over beaches   总被引:1,自引:0,他引:1  
A physical parameter, μb, which was used to meet the forcing of primary short waves to be off-resonant before wave breaking, has been considered as an applicable parameter in the infra-gravity wave generation. Since a series of modulating wave groups for different wave conditions are performed to proceed with the resonant mechanism of infra-gravity waves prior to wave breaking, the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope, βb. The results appear a large dependence of the growth rate, α, of incident bound long wave, separated by the three-array method, on the normalized bed slope, βb. High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves. The cross-shore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region. The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves. Finally, this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions.  相似文献   

13.
A run-up of irregular long sea waves on a beach with a constant slope is studied within the framework of the nonlinear shallow-water theory. This problem was solved earlier for deterministic waves, both periodic and pulse ones, using the approach based on the Legendre transform. Within this approach, it is possible to get an exact solution for the displacement of a moving shoreline in the case of irregular-wave run-up as well. It is used to determine statistical moments of run-up characteristics. It is shown that nonlinearity in a run-up wave does not affect the velocity moments of the shoreline motion but influences the moments of mobile shoreline displacement. In particular, the randomness of a wave field yields an increase in the average water level on the shore and decrease in standard deviation. The asymmetry calculated through the third moment is positive and increases with the amplitude growth. The kurtosis calculated through the fourth moment turns out to be positive at small amplitudes and negative at large ones. All this points to the advantage of the wave run-up on the shore as compared to a backwash at least for small-amplitude waves, even if an incident wave is a Gaussian stationary process with a zero mean. The probability of wave breaking during run-up and the applicability limits for the derived equations are discussed.  相似文献   

14.
We describe experiments with multi-directional focused waves interacted with a vertical circular cylinder in a 3D wave basin. The focus of this study is on the run-up of multi-directional focused waves, wave forces, and wave pressures on the cylinder. Part I, the study on wave run-up, has already been presented by Li et al. (2012). In this paper, the analysis of the wave force on the vertical cylinder is presented.In this experiment, a cylinder with 0.25 m in diameter was adopted and different wave parameters, such as focused wave amplitude, peak frequency, frequency bandwidth and directional spreading index, are considered. The model scale kpa (kp is the wave number corresponding to peak frequency, a is the radium of the cylinder) varies from 0.32 to 0.65. The maximum forces of multi-directional focused wave on cylinder were measured and investigated. The results showed that the wave parameters have a significant influence on the wave force, and that the spatial profile of the surface of multi-directional focused wave can also affect its force on the cylinder, which is different from two-dimensional wave. In addition, the ‘secondary loading cycle’ phenomenon was also observed and discussed. In our experiments, the ‘secondary loading cycles’ occur when kA > 0.36 for all cases. While in some referred small scale experiments, the secondary load cycles are observed even for kA = 0.2, when the waves are longer enough. To larger model scale, the pronounced secondary load cycle occurs with larger wave steepness waves.  相似文献   

15.
A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves, which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with the organized motion are positive. This is in agreement with several field and laboratory measurements which were previously unexplained, and the new theory successfully links measured wave growth rates and measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes occur. The theory is initially developed for long waves, after which the velocity potential and dispersion relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc turbulent diffusion. Future models of atmosphere-ocean exchanges should also acknowledge that momentum is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation for free waves may need to be considered in future wind wave development models.  相似文献   

16.
Prediction of run-up level is a key task in design of the coastal structures. For the design of the crest level of coastal structures, the wave run-up level with a 2% exceedance probability, Ru2%, is most commonly used. In this study, the performance of M5 model tree for prediction of the wave run-up on rubble-mound structures was investigated. The main advantage of model trees, unlike the other soft computing tools, is their easier use and more importantly their understandable mathematical rules. Experimental data set of Van der Meer and Stam was used for developing model trees. The conventional governing parameters were selected as the input variables and the obtained results were compared with Van der Meer and Stam’s formula, recommended by the Coastal Engineering Manual (CEM, 2006). The predictive accuracy of the model tree approach was found to be superior to that of Van der Meer and Stam’s empirical formula. Furthermore, to judge the generalization capability of the model tree method, the model developed based on laboratory data set was validated with the prototype run-up measurements on the Zeebrugge breakwater, Belgium. Results show that the model tree is more accurate than empirical formulas and TS Fuzzy approach in estimating the full-scale run-up.  相似文献   

17.
While the destruction caused by a tsunami can vary significantly owing to near- and onshore controls, we have only a limited quantitative understanding of how different local parameters influence the onshore response of tsunamis. Here, a numerical model based on the non-linear shallow water equations is first shown to agree well with analytical expressions developed for periodic long waves inundating over planar slopes. More than 13,000 simulations are then conducted to examine the effects variations in the wave characteristics, bed slopes, and bottom roughness have on maximum tsunami run-up and water velocity at the still water shoreline. While deviations from periodic waves and planar slopes affect the onshore dynamics, the details of these effects depend on a combination of factors. In general, the effects differ for breaking and non-breaking waves, and are related to the relative shift of the waves along the breaking–non-breaking wave continuum. Variations that shift waves toward increased breaking, such as steeper wave fronts, tend to increase the onshore impact of non-breaking waves, but decrease the impact of already breaking waves. The onshore impact of a tsunami composed of multiple waves can be different from that of a single wave tsunami, with the largest difference occurring on long, shallow onshore topographies. These results demonstrate that the onshore response of a tsunami is complex, and that using analytical expressions derived from simplified conditions may not always be appropriate.  相似文献   

18.
In this paper we review and re-examine the classical analytical solutions for run-up of periodic long waves on an infinitely long slope as well as on a finite slope attached to a flat bottom. Both cases provide simple expressions for the maximum run-up and the associated flow velocity in terms of the surf-similarity parameter and the amplitude to depth ratio determined at some offshore location. We use the analytical expressions to analyze the impact of tsunamis on beaches and relate the discussion to the recent Indian Ocean tsunami from December 26, 2004. An important conclusion is that extreme run-up combined with extreme flow velocities occurs for surf-similarity parameters of the order 3–6, and for typical tsunami wave periods this requires relatively mild beach slopes. Next, we compare the theoretical solutions to measured run-up of breaking and non-breaking irregular waves on steep impermeable slopes. For the non-breaking waves, the theoretical curves turn out to be superior to state-of-the-art empirical estimates. Finally, we compare the theoretical solutions with numerical results obtained with a high-order Boussinesq-type method, and generally obtain an excellent agreement.  相似文献   

19.
The wavelet-based bicoherence, which is a new and powerful tool in the analysis of nonlinear phase coupling, is used to study the nonlinear wave–wave interactions of breaking and non-breaking gravity waves propagating over a sill. Two cases of mechanically generated random waves based on Jonswap spectra are used for this purpose. Values of relative depth, kph (kp is the wave number of the spectral peak and h is the water depth) for this study range between 0.38 and 1.22. The variations of wavelet-based total bicoherence for the test cases indicate that the degree of quadratic phase coupling increases in the shoaling region consistent with a wave profile that is pitched shoreward, relative to a vertical axis as seen in the experiments, but decreases in the de-shoaling region. For the non-breaking case, the degree of quadratic phase coupling continues to increase until waves reach the top of the sill. Breaking waves, however, achieve their highest level of quadratic phase coupling immediately before incipient breaking and the degree of phase coupling decreases sharply following breaking. In addition the wavelet-based bicoherence spectra provide evidence of the harmonics' growth which is reflected in the energy spectra. The bicoherence spectra also show that quadratic phase coupling between modes within the peak frequency as well as between modes of the peak frequency and its higher harmonics are dominant in the shoaling region, even though there are relatively high levels of quadratic phase coupling occurring between other frequencies. Furthermore, using the temporal resolution property of the wavelet-based bicoherence, we find that the quadratic wave interactions occur more readily during segments of time with large change of wave amplitude, rather than those segments having large wave amplitudes, but small gradients in amplitude.  相似文献   

20.
As known fromin situ observations, inhomogeneities of flows and of the atmospheric boundary layer produce variations of the intensity of wind wave breaking. A relevant phenomenological model is suggested here, describingin situ data on the breaking of waves in the presence of internal waves. The response of the wave breaking to the flow's inhomogeneity enhances with the growth of its spatial or temporal scale. For the mesoscale (10–100 km) inhomogeneities, the model is essentially simplified—wave breakings depict the local energy inputs to wind waves. The model allows us to compute currents of various type in the wave breaking intensity field. The results may have practical implications, in terms of remote sensing of the ocean. Translated by Vladimir A. Puchkin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号