首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on measurements of the 18O isotope composition of 247 samples collected over a 3-year period we have assessed the oxygen isotope composition of water masses in the North Sea. This is the first δ18O data set that covers the entire North Sea basin. The waters lie on a mixing line: δ18O (‰VSMOW) = −9.300 + 0.274(S) with North Atlantic sub-polar mode water (SPMW) and surface waters, and Baltic Sea water representing the saline and freshwater end members respectively. Patterns exhibited in surface and bottom water δ18O distributions are representative of the general circulation of the North Sea. Oxygen-18 enriched waters from the North Atlantic enter the North Sea between Scotland and Norway and to a lesser extent through the English Channel. In contrast, oxygen-18 depleted waters mainly inflow from the Baltic Sea, the rivers Rhine and Elbe, and to a lesser degree, the Norwegian Fjords and other river sources. Locally the δ18O–salinity relationship will be controlled by the isotopic composition of the freshwater inputs. However, the range of local freshwater compositions around the North Sea basin is too narrow to characterise the relative contributions of individual sources to the overall seawater composition. This dataset provides important information for a number of related disciplines including biogeochemical research and oceanographic studies.  相似文献   

2.
Surface seawater samples were collected in the Jiaozhou Bay, a typical semi-closed basin located at the western part of the Shandong Peninsula, China, during four cruises. Concentrations of monosaccharides (MCHO), polysaccharides (PCHO) and total dissolved carbohydrates (TCHO) were measured with the 2,4,6-tripyridyl-s-triazine spectroscopic method. Concentrations of TCHO varied from 10.8 to 276.1 μM C for all samples and the ratios of TCHO to dissolved organic carbon (DOC) ranged from 1.1 to 67.9% with an average of 10.1%. This result indicated that dissolved carbohydrates were an important constituent of DOC in the surface seawater of the Jiaozhou Bay. In all samples, the concentrations of MCHO ranged from 2.9 to 65.9 μM C, comprising 46.1 ± 16.6% of TCHO on average, while PCHO ranged from 0.3 to 210.2 μM C, comprising 53.9 ± 16.6% of TCHO on average. As a major part of dissolved carbohydrates, the concentrations of PCHO were higher than those of MCHO. MCHO and PCHO accumulated in January and July, with minimum average concentration in April. The seasonal variation in the ratios of TCHO to DOC was related to water temperature, with high values in January and low values in July and October. The concentrations of dissolved carbohydrates displayed a decreasing trend from the coastal to the central areas. Negative correlations between concentrations of TCHO and salinity in July suggested that riverine input around the Jiaozhou Bay had an important effect on the concentrations of dissolved carbohydrates in surface seawater. The pattern of distributions of MCHO and PCHO reported in this study added to the global picture of dissolved carbohydrates distribution.  相似文献   

3.
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (δD, δ18O, 3H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of 222Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m−3 which were in opposite relationship with observed salinities. Time series measurements of 222Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m−3), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the 222Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase 222Rn concentration during lower sea level, and opposite, during high tides where the 222Rn activity concentration is smaller. The estimated SGD fluxes varied during 22–26 November between 8 and 40 cm d−1, with an average value of 21 cm d−1 (the unit is cm3/cm2 per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity, which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater–seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater), which claims for potential environmental concern with implications on the management of freshwater resources in the region.  相似文献   

4.
Formation of seep bubble plumes in the Coal Oil Point seep field   总被引:2,自引:2,他引:0  
The fate of marine seep gases (transport to the atmosphere or dissolution, and either bacterial oxidation or diffusion to the atmosphere) is intimately connected with bubble and bubble-plume processes, which are strongly size-dependent. Based on measurements with a video bubble measurement system in the Coal Oil Point seep field in the Santa Barbara Channel, California, which recorded the bubble-emission size distribution (Φ) for a range of seep vents, three distinct plume types were identified, termed minor, major, and mixed. Minor plumes generally emitted bubbles with a lower emission flux, Q, and had narrow, peaked Φ that were well described by a Gaussian function. Major plumes showed broad Φ spanning very small to very large bubbles, and were well described by a power law function. Mixed plumes showed characteristics of both major and minor plume classes, i.e., they were described by a combination of Gaussian and power law functions, albeit poorly. To understand the underlying formation mechanism, laboratory bubble plumes were created from fixed capillary tubes, and by percolating air through sediment beds of four different grain sizes for a range of Q. Capillary tubes produced a Φ that was Gaussian for low Q. The peak radius of the Gaussian function describing Φ increased with capillary diameter. At high Q, they produced a broad distribution, which was primarily described by a power law. Sediment-bed bubble plumes were mixed plumes for low Q, and major plumes for high Q. For low-Q sediment-bed Φ, the peak radius decreased with increasing grain size. For high Q, sediment-bed Φ exhibited a decreased sensitivity to grain size, and Φ tended toward a power law, similar to that for major seep plumes.  相似文献   

5.
Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (≤3 °C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day−1 or cm3 cm−2 day−1) an analog flowmeter overestimated flow rates by ≥7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter.  相似文献   

6.
Rainfall during winter storms produces extensive turbid, freshwater plumes in the coastal waters of the Southern California Bight. When the plumes result from urban runoff they contain toxic pollutants along with pathogenic bacteria and viruses, often resulting in closure of public beaches. We examined the spatial structure and evolution of stormwater plumes in Santa Monica Bay in 1996. The plumes resulted from freshwater discharge from the Ballona Creek and Malibu Creek watersheds which supply approximately 60% of the freshwater runoff to Santa Monica Bay. The spatial scales of the plumes were determined using shipboard measurements of water properties obtained from towyo transects and surface underway sampling. Salinity maps showed that the plumes typically extended 4-7 km offshore, consistent with scaling by the internal Rossby radius of deformation. Plumes extended along shore 10 km or more. Generally the plumes occupied the upper 10 m of the water column. The persistence time of a plume offshore of Ballona Creek was about three days based on a sequence of surveys in March 1996 following rainfall of about 21 mm. Limited comparison of plumes from Ballona Creek, which drains a developed watershed, and Malibu Creek, which drains a rural watershed, suggested that Malibu Creek required greater rainfall to produce an offshore plume. A stormwater plume offshore of Malibu Creek was observed on both sides of the creek mouth, possibly due to freshwater discharge from smaller surrounding watersheds or advection of freshwater discharges from the east and south. Plumes offshore of Ballona Creek mainly resulted from the creek itself and usually extended northward from the creek mouth, consistent with the wind forcing and the Coriolis acceleration.  相似文献   

7.
The conservative potential of arsenic in the relatively pristine waters of Galway Bay, an estuarine system in the west of Ireland, is examined through the inter-seasonal variations in the distribution of its total, hydride and non-hydride fractions. The arsenic concentrations in Galway Bay and local fresh water sources at all seasons were lower than what is considered the natural seawater concentration of 2 μg L−1 (27 nM). The effects of physical mixing, biological uptake and regeneration of arsenic on its distribution are considered. The degree of biological uptake and regeneration of the element are determined by a first order speciation between total arsenic (a small part of which should be of organic origin) and hydride arsenic (mostly of inorganic origin). The structural similarity of arsenic species to phosphate in seawater causes arsenic to be taken up by biota, which then have to detoxify it, so results are presented against phosphate to determine the degree of biological transformation of arsenic at different seasons. An in-house, batch type system of hydride generation coupled to electro-thermal atomic absorption spectrometry is used for the analysis of arsenic; this is preceded by UV-digestion prior to the measurement of total arsenic. Results show only a small association of arsenic with phosphate but a near linear, positive distribution pattern between arsenic and salinity in Galway Bay (R2 ∼ 0.6), which is reproducible among seasons, indicating that in this environment the biological uptake of arsenic is likely to be a much slower process than the physical mixing of the water masses.  相似文献   

8.
Temporarily open/closed estuaries typically open to the sea due to freshwater inflow coupled with storm surge events. In September 2008, in the absence of freshwater inflow, the mouth of the East Kleinemonde Estuary breached in response to a storm surge. The mouth of the estuary closed the following day at a high level. Marine overwash events following the breach introduced large volumes of saline water into the estuary and raised the water level by 0.07–0.33 m. Salinity was significantly higher in the 15 month closed phase after the breach (31 ± 0.9) compared to 21.9 ± 0.9 in the closed brackish phase before the breach. The historical average salinity for the estuary during a closed period is 23–25. The increase in salinity has reduced submerged macrophytes Ruppia cirrhosa and Chara vulgaris cover by 38.1%. Macroalgal cover of species such as Dictyota dichotoma, Caulacanthus ustulatus, Codium tenue and Ulva spp. have increased by 7.9%. The saline high water levels have also significantly reduced supratidal salt marsh cover by 15.2%, and reed and sedge cover by 19.7%. Loss of these habitats may result in bank destabilisation and erosion. This is the first record of an extended saline period in the 15 years the estuary has been monitored. Sea level rise in association with climate change, together with localised freshwater inflow reduction is likely to result in an increase in marine overwash events. The frequency and duration of closed saline periods are likely to increase in this type of estuary. A loss of submerged macrophytes may have significant impacts on faunal composition and abundance and on the subsequent functioning of temporarily open/closed estuaries. This has serious ecological implications since these estuaries represent 70% of the different types of estuaries found in South Africa.  相似文献   

9.
Hydrological alterations in watersheds have changed the flows of freshwater to many nearshore marine environments. The ensuing alterations to the salinity environment of coastal waters may have implications for species distribution. This study describes the response of two common bivalves to a modified salinity environment imposed by freshwater inputs from a hydroelectric power station in Doubtful Sound, New Zealand. Populations of Austrovenus stutchburyi and Paphies australis inhabiting river deltas near the outflow of the power station in inner Doubtful Sound were more than an order of magnitude smaller in abundance than populations in neighbouring Bradshaw Sound where the salinity regime is unaltered. In addition, there was a lack of small size classes of both species in inner Doubtful Sound, suggesting that these populations are unsustainable over the long term (10–20 years). Laboratory experiments demonstrated that sustained exposure (>30 days) to low salinity (<10) significantly decreased bivalve survivorship; however, both species survived periods of exposure to freshwater up to at least 20 days in duration if followed by a period of return to normal seawater salinity. Examination of the extant salinity regime in light of these results indicates the current salinity environment in Doubtful Sound restricts bivalves to deeper waters (5–6 m depth). The observed discrepancy in the total biomass of these active suspension feeders between altered and control sites has potential implications for the flux of organic matter in the food webs of Fiordland's shallow soft sediment communities.  相似文献   

10.
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
1.
Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
2.
The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
3.
Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
  相似文献   

11.
Near-shore discharge of fresh groundwater from the fractured granitic rock at Flamengo Bay, Ubatuba, Brazil, is strongly controlled by the local geology. Freshwater flows primarily through a zone of weathered granite to a distance of 24 m offshore. In the nearshore environment this weathered granite is covered by about 0.5 m of well-sorted, coarse sands containing pore water with sea water salinity, with an abrupt transition to much lower salinity once the weathered granite is penetrated. Further offshore, low-permeability marine sediments contain saline porewater, marking the limit of offshore migration of freshwater. Freshwater flux rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge of 0.17–1.6 m3/day per m of shoreline. Dissolved inorganic nitrogen and silicate are elevated in the porewater relative to seawater, and appeared to be a net source of nutrients to the overlying water column. The major ion concentrations suggest that the freshwater within the aquifer has a short residence time. Major element concentrations do not reflect in situ alteration of the granitic rocks, possibly because the alteration occurred prior to development of the current discharge zones, or because of large volumes of water discharge in this high rainfall region.  相似文献   

12.
13.
冷泉活动区气泡羽状流数值模拟的进一步研究   总被引:1,自引:1,他引:0  
以南海气泡羽状流赋存特征为参考,本文继续研究冷泉活动区气泡羽状流的地震响应。为使羽状流建模方案更合理,根据水中气泡在上升过程时其半径的变化情况,修改原建模方案,重新建立了羽状流水体模型。通过正演模拟得到了羽状流炮集地震记录,单炮记录上显示出明显的散射波场特征和模型的周期特点。通过叠前深度偏移处理炮集地震记录,得到边界收敛效果较好的成像剖面,且成像精度较高。以上研究又一次奠定了羽状流地震响应进一步研究的基础,也逐步探索出更适合羽状流地震资料的处理方法,为识别羽状流提供了理论指导。  相似文献   

14.
The authors report on the development and use of an impedance probe to measure the volume fraction of air (void-fraction) in bubble plumes generated by breaking waves. The void-fraction gauge described was found to be most useful in the initial period after breaking when large void-fractions prevail. The authors describe the instrumentation at length and report on its use in the laboratory and in the field. The instrument is found to be capable of rendering the space-time evolution of the void-fraction field from controlled laboratory breaking waves. Field results show measurements of void-fractions (up to 24%) which are several orders of magnitude greater than time averaged values previously reported. Preliminary measurements show that the fraction of breaking waves per wave is dependent on significant wave height and wind speed. The dependence on wind speed is compared with data of previous investigators. Underwater video photography from the field shows the formation and evolution of distinct bubble plumes and the presence of large bubbles (at least 6-mm radius) generated by breaking  相似文献   

15.
In the Mediterranean Sea the carbon chemistry is poorly known. However, the impact of the regional and large-scale anthropogenic pressures on this fragile environment rapidly modifies the distribution of the carbonate system key properties like CT (total dissolved inorganic carbon), AT (total alkalinity), CANT (anthropogenic CO2), and pH. This leads inexorably to the acidification of its waters. In order to improve our knowledge, we first develop interpolation procedures to estimate CT and AT from oxygen, salinity, and temperature data using all available data from the EU/MEDAR/MEDATLAS II database. The acceptable levels of precision obtained for these estimates (6.11 ??mol-kg−1 for CT and 6.08 ??mol kg−1 for AT) allow us to draw the distribution of CANT (with an uncertainty of 6.75 ??mol kg−1) using the Tracer combining Oxygen, inorganic Carbon, and total Alkalinity (TrOCA) approach. The results indicate that: 1) all Mediterranean water bodies are contaminated by anthropogenic carbon; 2) the lowest concentration of CANT is 37.5 ??mol kg−1; and 3) the western basin is more contaminated than the Eastern basin. After reconstructing the distribution of key properties (CT, AT, CANT) for four periods of time (between 1986 and 2001) along a west-east section throughout the whole Mediterranean Sea, we analyze the impact of the Eastern Mediterranean Transient (EMT). Not only has the concentration of CANT increased (especially in the intermediate and the bottom layers of the eastern basin, during and after the EMT), but also the distribution of all properties has been considerably perturbed. This is discussed in detail. For the first time, the level of acidification is estimated for the Mediterranean Sea. Our results indicate that for the year 2001 all waters (even the deepest) have been acidified by values ranging from −0.14 to −0.05 pH unit since the beginning of the industrial era, which is clearly higher than elsewhere in the open ocean. Given that the pH of seawater may affect a very large number of chemical and biological processes, our results stress the necessity to develop new programs of research to understand and then predict the evolution of the carbonate system properties in the Mediterranean Sea.  相似文献   

16.
Turbulent flow fields under spilling breaking waves are measured by particle image velocimetry and analyzed using the wavelet techniques in a laboratory surf zone. The turbulent vortical structures and corresponding length scales in the flow are detected through the eduction of the most excited mode with local intermittency measure that is found to correlate with the passage of the structure. Distributions and evolution of the educed vortical structures are presented and discussed. Packets of vortical structures with high intermittency is observed to stretch downward below the initially low-intermittency trough level, indicating these structures play a crucial role in turbulent mixing below the trough level. It is found that the probability density functions of the intermittent energy of the educed structures, vorticity and swirl strength display an exponential decay. Ensemble-averaged length scales of the educed vortical structures are found to be about 0.1 to 0.2 times the local water depth, close to the turbulent mixing length reported in the surf zone. The Kolmogorov microscale is evaluated and the turbulent mixing length is estimated using the k − ε relation and mixing length hypothesis. The k − ε relation may overestimate the mixing length scale for energetic descending eddies.  相似文献   

17.
Within the CLASH project, wave overtopping at the vertical seawall at Samphire Hoe was measured by HR Wallingford (HRW), and compared laboratory tests in 2 & 3 dimensions carried out at the University of Edinburgh and HRW. At Samphire Hoe, overtopping volumes were captured in three volumetric tanks capable of measuring wave-by-wave and total overtopping volumes. The three tanks were placed progressively farther back from the seawall edge so that the spatial distribution of the overtopping discharges could be determined. The field measurement equipment was successfully deployed on three occasions, and measured overtopping discharges ranged from that barely considered to be hazardous to the public to over q = 3.0 l/s/m. The 2d testing at Edinburgh was modelled at a scale of 1:40, and the 3d model at HRW was modelled at 1:20. For both sets of laboratory tests, a range of conditions, representative of the storm wave conditions and water levels, was reproduced in addition to a set of parametric conditions. The storm conditions allowed a direct comparison between the field and laboratory measurements, and the parametric conditions were used to test the generic overtopping behaviour of the structure. For both sets of laboratory tests, mean overtopping discharges and the spatial distribution were measured separately. Analysis of the distribution data relates the proportion of the discharge that has landed as a function of (Lo); where x is the distance behind the crest, and Lo is the offshore wavelength. Analysis of the field, 2d & 3d laboratory data, and empirical prediction methods have not identified any scale effects for overtopping discharges at vertical and near-vertical seawalls.  相似文献   

18.
Nitrification rates, as oxidation of 15N-labelled ammonium and loss of nitrite from N-Serve treated samples, were measured in Kochi backwaters during three seasons. Nitrification rates ranged from undetectable to 166 nmol N L−1 h−1 in the water column and up to 17 nmol N (g wet wt)−1 h−1 in sediments. Nitrification rates were higher in intermediate salinities than in either freshwater or seawater end. Within this salinity range, nitrification rates could be related to ammonium concentrations. As shown by the relation between ammonification and nitrification rates, it is also likely that nitrification is more regulated by renewal rates, rather than by in situ concentrations, of substrate. Among other environmental parameters, temperature and pH may have an influence on nitrification. Potential nitrification rates calculated from loss of nitrite from N-Serve treated, nitrite-enriched samples were about 800 nmol N L−1 h−1 in the water column and 40 nmol N (g wet wt)−1 h−1 in sediments. While these rates are in balance with those of biological ammonium production they may be inadequate to mitigate ammonium pollution in this estuary.  相似文献   

19.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

20.
This study presents first-time observations of bacterial and viral abundances in hydrothermal event plumes. Two water-column event plumes were formed in conjunction with seismic events and seafloor volcanic eruptions on the northern Gorda Ridge in February–March 1996. Epifluorescence counts of bacteria and viruses were performed on water samples from 3 successive cruises staged in the 10–90 days that followed the onset of seismicity. Relative to background seawater at these 1800–3200 m depths, bacterial abundance was enhanced by 2–3 fold within both event plumes. In contrast, viral numbers were below background seawater values in the younger and more intense of the two event plumes (EP96A), and enhanced in the other (EP96B). Changes in viral abundance may be a secondary response to that of plume bacteria as well as being influenced by particle formation and precipitation within the plumes. Lower bacteria/heat, virus/heat and virus/bacteria ratios in EP96A versus EP96B confirm distinct differences in the microbial response to event plume formation, possibly related to observed differences in plume chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号