首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent experimental and theoretical findings raise interesting questions about the applicability of the normal gravity-wave dispersion relation at wave frequencies that exceed the spectral peak frequency. The use of the dispersion relation in analysis of HF radar Doppler sea echo is examined in this paper. Drawing on the results of perturbation theory for wave-wave nonlinear interactions, we show that this relation, so essential to echo interpretation in terms of current and wave information, can be employed with no degradation in accuracy for current measurement when the dominant wave frequency is considerably less (by as much as 10) than the radar Bragg resonance frequency. This finding is supported by comparisons of currents measured by HF radar with "surface truth;" the first-order echo must only be identifiable in order to be used accurately. Wave-height directional spectral information can be extracted from the second-order echo at a given radar frequency up to the point (in wave height) where the perturbation solution employed in the inversion process fails; then a lower radar frequency must be used. On the other hand, most conventional wave measuring instruments should not use the dispersion relation for interpretation of data well beyond the spectral peak, because they do not observe wave height as a function of both space and time independently, as does HF radar.  相似文献   

2.
Measurements of the ocean wave directional spectrum using a dual, high-frequency (HF) radar system are presented. A model-fitting technique is used to obtain wave measurements from the radar Doppler spectra. Over 100 h of data, collected NURWEC2 (Netherlands-UK Radar Wavebuoy Experimental Comparison), have been compared with measurements using a WAVEC directional wave buoy. The amplitude and directional characteristics of long-wave components at frequencies of 0.07-0.1 Hz in general show good agreement. Reasonable estimates of the directional spectrum across the whole frequency range are obtained when the assumptions of the model-fitting technique are appropriate. Remaining problems in radar measurement and difficulties in assessing accuracy are discussed  相似文献   

3.
In this study the assimilation of HF radar data into a high resolution, coastal Wavewatch III model is investigated. An optimal interpolation scheme is used to assimilate the data and the design of a background error covariance matrix which reflects the local conditions and difficulties associated with a coastal domain is discussed. Two assimilation schemes are trialled; a scheme which assimilates mean parameters from the HF radar data and a scheme which assimilates partitioned spectral HF radar data. This study demonstrates the feasibility of assimilating partitioned wave data into a coastal domain. The results show that the assimilation schemes provide satisfactory improvements to significant wave heights but more mixed results for mean periods. The best improvements are seen during a stormy period with turning winds. During this period the model is deficient at capturing the change in wave directions and the peak in the waveheights, while the high sea state ensures good quality HF radar data for assimilation. The study also suggests that there are both physical and practical advantages to assimilating partitioned wave data compared to assimilating mean parameters for the whole spectrum.  相似文献   

4.
High-frequency (HF) radar wave processing is often based on the inversion of the Barrick-Weber equations, introduced in 1977. This theory reaches its limitations if the length of the Bragg-scattering wave raises to the order of the significant waveheight, because some assumptions are no longer met. In this case, the only solution is moving to lower radar frequencies, which is not possible or desirable in all cases. This paper describes work on an empirical solution which intends to overcome this limitation. However, during high sea state, the first-order Bragg peaks sometimes could not be clearly identified which avoids the access to the second-order sidebands. These cases cause problems to the algorithm which have not been solved yet and currently limit the maximum significant waveheight to about the same values as reported for the integral inversion method. The regression parameters of the empirical solution calibrated from the European Radar Ocean Sensing (EuroROSE) data set are constant values for the complete experiment and when applied to the HF radar data they reconstruct the measurements by a colocated wave buoy quite well. When including a radar-frequency-dependent scaling factor to the regression parameters, the new algorithm can also be used at different radar frequencies. The second-order frequency bands used for the empirical solution are sometimes disturbed by radio interference and ship echoes. Investigations are presented to identify and solve these situations  相似文献   

5.
Directional wave information from the SeaSonde   总被引:1,自引:0,他引:1  
This paper describes methods used for the derivation of wave information from SeaSonde data, and gives examples of their application to measured data. The SeaSonde is a compact high-frequency (HF) radar system operated from the coast or offshore platform to produce current velocity maps and local estimates of the directional wave spectrum. Two methods are described to obtain wave information from the second-order radar spectrum: integral inversion and fitting with a model of the ocean wave spectrum. We describe results from both standard- and long-range systems and include comparisons with simultaneous measurements from an S4 current meter. Due to general properties of the radar spectrum common to all HF radar systems, existing interpretation methods fail when the waveheight exceeds a limiting value defined by the radar frequency. As a result, standard- and long-range SeaSondes provide wave information for different wave height conditions because of their differing radar frequencies. Standard-range SeaSondes are useful for low and moderate waveheights, whereas long-range systems with lower transmit frequencies provide information when the waves are high. We propose a low-cost low-power system, to be used exclusively for local wave measurements, which would be capable of switching transmit frequency when the waveheight exceeds the critical limit, thereby allowing observation of waves throughout the waveheight range.  相似文献   

6.
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±2~(1/2) and ±1(2~(1/2)) times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.  相似文献   

7.
This is a Part I of a paper of nonlinearities of wind waves in the deep open ocean. First, considerations are given in order to verify the theoretical expression for bound waves from observed data. We compare the contribution of bound waves and double Bragg scattering to the second-order scattering, and we show that the contribution of bound waves is larger, and that bound waves can be detected by measuring the Doppler spectra of HF (high-frequency) radio wave scattering from the sea surface. Moreover, if the theory of the HF radio wave scattering from the sea surface is verified, so is the second-order perturbation theory for bound waves. Then, the contributions of bound waves to ocean wave spectra are investigated on the basis of the nonlinear theory. The bound waves are shown to modify frequency spectra and wave directional distributions at higher frequencies, and it is shown that although the modifications of frequency spectra are smaller for a two-dimensional field case than for a one-dimensional field case, they are not negligible at higher frequencies. On the other hand, the modifications of wave directional distributions are shown to be significant at higher frequencies. These discussions become significant only when bound wave predictions are verified in the open ocean. Consequently, it is shown that nonlinearities of water waves are important in considering both radio wave scattering from the sea surface and the detailed structures of ocean wave spectra at high frequencies.  相似文献   

8.
All ocean wave components contribute to the second-order scattering of a high-frequency (HF) radio wave by the sea surface. It is therefore theoretically possible to estimate the ocean wave spectrum from the radar backscatter. To extract the wave information, it is necessary to solve the nonlinear integral equation that describes the relationship between the backscatter spectrum and the ocean wave directional spectrum. Different inversion techniques have been developed for this problem by different researchers, but there is at present no accepted “best” method. This paper gives an assessment of the current status of two methods for deriving sea-state information from HF radar observations of the sea surface. The methods are applied to simulated data and to an experimental data set with sea-truth being provided by a directional wave buoy  相似文献   

9.
CODAR, a high-frequency (HF) compact radar system, was operated continuously over several weeks aboard the semisubmersible oil platform Treasure Saga for the purpose of wave-height directional measurement and comparison. During North Sea winter storm conditions, the system operated at two different frequencies, depending on the sea state. Wave data are extracted from the second-order backscatter Doppler spectrum produced by nonlinearities in the hydrodynamic wave/wave and electromagnetic wave/scatter interactions. Because the floating oil rig itself moves in response to long waves, a technique has been developed and successfully demonstrated to eliminate to second order the resulting phase-modulation contamination of the echo, using separate accelerometer measurement of the platform's lateral motions. CODAR wave height, mean direction, and period are compared with data from a Norwegian directional wave buoy; in storm seas with wave heights that exceeded 9 m, the two height measurements agreed to within 20 cm RMS, and the mean direction to better than 15° RMS  相似文献   

10.
高频地波雷达是海洋环境监测的重要手段,当前已经实现对海流的业务化观测,但是外部因素常引起海流空间探测的不连续性。为解决此问题,尽量保障区域数据的完整性和准确性,本文将BP神经网络技术与空间插值相结合,建立了海流的BP神经网络插值模型,并进行了针对实测数据的缺失插值仿真,通过与反距离权重法和线性插值法插值结果的对比,分析该模型在区域海流大面积缺失、流速整体较大和流速整体较小3个方面的性能。结果表明,BP神经网络插值模型的海流预测效果明显优于其他两种方法,且在流场数据大范围缺失下也取得了良好的效果。  相似文献   

11.
Use of nautical radar as a wave monitoring instrument   总被引:2,自引:0,他引:2  
Common marine X-Band radars can be used as a sensor to survey ocean wave fields. The wave field images provided by the radars are sampled and analysed by a wave monitoring system (called WaMoS II) developed by the German research institute GKSS. This measuring system can be mounted on a ship, on offshore stations or at coastal locations. The measurement is based on the backscatter of microwaves from the ocean surface, which is visible as ‘sea clutter' on the radar screen. From this observable sea clutter, a numerical analysis is carried out. The unambiguous directional wave spectrum, the surface currents and sea state parameters such as wave periods, wave lengths, and wave directions can be derived. To provide absolute wave heights, the response of the nautical radar must be calibrated. Similar to the wave height estimations for Synthetic Aperture Radars, the so-called ‘Signal to Noise Ratio' leads to the determination of the significant wave height (HS). In this paper, WaMoS II results are compared with directional buoy data to show the capabilities of nautical microwave radars for sea state measurements.  相似文献   

12.
Experiments on the scattering of radio waves in the range 200 m to 3 cm from a rough sea surface are described. Amplitude, frequency, and space-time characteristics of scattered radio signals at different states of the sea surface are presented. It is shown that the problem of the short and medium wave scattering from the sea can be solved by the perturbance method. In this case the mechanism of scattering is of "resonant" character. The intensity of the backscatter signals is proportional to the density of the spatial spectrum on the half-length of the radio waves. The high frequency radio wave scattering is well described by a two-scale model of the scattering surface, "ripple on the large wave." The intensity of scattered radio signals is also proportional to the spectrum density of "ripples" whose length is approximately equal to half a radio wave. The effect of the large waves is to modulate the amplitude of a scattered radio signal and to broaden its frequency spectrum. Methods of solution of the reverse problem were considered. This allowed determination of parameters of sea roughness by characteristics of scattered radio signals. The principles of design of the corresponding equipment are described.  相似文献   

13.
An algorithm is developed for the inversion of bistatic high-frequency (HF) radar sea echo to give the nondirectional wave spectrum. The bistatic HF radar second-order cross section of patch scattering, consisting of a combination of four Fredholm-type integral equations, contains a nonlinear product of ocean wave directional spectrum factors. The energy inside the first-order cross section is used to normalize this integrand. The unknown ocean wave spectrum is represented by a truncated Fourier series. The integral equation is then converted to a matrix equation and a singular value decomposition (SVD) method is invoked to pseudoinvert the kernel matrix. The new algorithm is verified with simulated radar Doppler spectrum for varying water depths, wind velocities, and radar operating frequencies. To make the simulation more realistic, zero-mean Gaussian noise from external sources is also taken into account  相似文献   

14.
OSCR is an HF radar system that has been developed for high spatial resolution coastal surface current measurement. This paper describes preliminary results that demonstrate that wave measurement can be successfully obtained from suitably processed OSCR data. Comparisons with data from a WAVEC directional buoy are presented and show encouraging agreement. Some of the limitations to the measurement process are discussed and indicate a maximum range of about 20 km. Surface current variability on short time scales presents the most serious obstacle to wave measurement. This appears to be more of a problem when the mean currents are large, in that in these circumstances the data fail initial quality control criteria. However, in lower mean currents, the effect is often still present and leads to errors in long wave measurement  相似文献   

15.
For decades, the accelerometer wave buoy has been a preferred choice for offshore wave measurements. Although these measurements are accurate and robust, there are some issues of practical character that need to be inspected before using such measurements for detailed time-series investigations. Here three potential sources of inaccuracies are outlined which can appear due to improper mooring, limited high-frequency resolution or overly simple procedures for attaching measurement times (time stamps) to the measurements. The last two of these apply to all types of single-point wave-measuring devices.

An example of a wave-height series is given, in which part of the observed variation seems to be induced by the mooring. It is argued that unexpected semi-tidal modulations in measured wave-height can be an indication of a mooring that is too rigid. By truncating observed wave spectra from a deep-water location, it is demonstrated how the high-frequency cut-off limit of a wave measurement influences the most commonly used wave parameters. It is observed that the accuracy of common wave parameters remains acceptable up to a cut-off limit in the range of 0.30–0.35 Hz if the spectra above the cut-off frequency are replaced by a prognostic f−5 tail. Finally it is noted that the procedure of connecting time stamps to wave measurements can in some cases introduce an artificial time-lag compared to the real-time sea state.  相似文献   


16.
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging. The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM) signal and the downward LFM signal. Owing to the Doppler frequency shift from the sea surface, a range offset, which is proportional to the radial velocity of the sea surface, occurs between the upward and downward LFM signals. By using the least-squares linear fitting method in the transformed domain, the range offset can be measured and the current velocity can be retrieved. Finally, we verify the accuracy of current measurement with simulation results.  相似文献   

17.
The paper aims at introducing practical methods for power capture performance enhancement of a heaving wave energy converter in irregular seas. The optimum control solution requires tuning to wave frequency based on wave force information. However, identification of the wave frequency in irregular seas is considered to be a complex and difficult task. This is partly due to technical difficulties in determination of the wave force. Besides, there are no clear guidelines for identification of wave frequency from an irregular sea state based wave force information. In a typical application, one of the available sources of information about the wave properties is the wave elevation record. The proposed approach presents a method for estimation of the wave frequency information from the wave elevation data by using signal processing and filtering techniques. The proposed method uses filters to generate an estimation of wave force information, which is used to identify the local wave frequency by method of a time-series analysis of the data. This wave frequency information is then used in tuning the device. The details of the proposed techniques, the model of the wave energy converter, the simulated sea states and the related simulation results are also presented.  相似文献   

18.
作为LORCE计划中构建高频地波雷达观测网的试点,面向象山港牛鼻山水道,在六横岛郭巨山和白马礁各设置了1台OSM AR-S50高频地波雷达.在2台雷达合成表面流场有效区域的中间地带,利用Valeport旋桨式海流仪和ADCP定点开展了周日连续观测,以验证高频地波雷达合成表面流场的精度.对比定点流场和高频地波雷达对应数据...  相似文献   

19.
Several important statistical properties of the HF sea echo and its Doppler power spectrum, which are useful in optimizing the design of radar oceanographic experiments, are established. First- and second-order theories show that the echo signal (e.g., the voltage) should be Gaussian; this is confirmed with experimental surface-wave data i) by comparison of the normalized standard deviation of the power spectrum at a given frequency with its predicted value of unity, and ii) by cumulative distribution plots of measured spectral amplitudes on Rayleigh probability charts. The normalized standard deviation of the dominant absolute peak amplitudes of the power spectrum (which wander slightly in frequency) are shown from experimental data to besim 0.7for the first-order peaks andsim 0.5for the second-order peaks. The autocorrelation coefficient of the power spectra is derived from measured data and interpreted in terms of the spectral peak widths; from this information, the correlation time (or time between independent power spectrum samples) iS shown to besim 25-50s for radar frequencies above 7 MHz. All of these statistical quantities are observed to be independent of sea state, scattering cell size, and relatively independent of radar operating frequency. These quantities are then used to establish the statistical error (and confidence interval) for radar remote sensing of sea state, and it is shown, for example, that 14 power spectral samples result in a sample average whose rms error about the true mean is 1.0 dB.  相似文献   

20.
High-frequency (HF) ground wave radar (GWR) is emerging as a significant tool for monitoring ocean surface conditions at ranges well beyond the line-of-sight horizon that limits conventional systems. An experimental GWR system at Cape Race, Newfoundland, Canada that has been operational since 1991, has the ability to performing routine surveillance of oceanic surface parameters and surface target detection. Operating in the frequency range between 5 and 8 MHz, the frequency modulated interrupted continuous wave (FMICW) radar has a nominal range capability of 200 km. An experiment was performed during the period of October 20-November 21, 1992 to test the surface current measuring capability of the Cape Race system. Here, near real-time radial surface current information is extracted from the Doppler spectra of the radar time series data and a comparison is performed to the Lagrangian velocities derived from the position-time tracks of Accurate Surface Tracker (AST) drifters. A wide range of oceanic conditions were experienced during the experimental period, and favorable results were obtained from the comparison regardless of the sea state conditions. The analysis shows the standard deviation in the radar radial velocity component to be approximately 5 cm/s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号