首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves.  相似文献   

2.
The friction coefficient in the permeability parameter of a perforated wall has been estimated on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of various types of structures including a perforated wall. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula. It is also shown that the proposed formula can be used for irregular waves as well.  相似文献   

3.
This paper presents an analytical solution for scattering of oblique incident, small amplitude, monochromatic wave trains by a stationary rigid multi-layered objects with rectangular cross-section. The object is infinite long and consists of multilayers, which can be either solid or permeable. This paper extends the previous work by Hu and Liu [1] from normal incident wave condition with a special object configuration to oblique incident waves with multi-layered object. The present model is validated with several existing solutions for normal/oblique waves interacting with a single object; excellent agreement is observed. New numerical results are presented to investigate the effects of incidence angle on reflection, transmission and energy loss coefficients for a combined floating and bottom-mounted permeable breakwater. A new floating board-cage breakwater is developed from the present model and its solutions are discussed in detail. A computer program, AWAS-P, has been updated so that it is applicable for both oblique and normal incident waves, while the object is multi-layered.  相似文献   

4.
H. T. Teo 《Ocean Engineering》2003,30(16):2157-2166
Non-linear wave pressure induced by short-crested waves on a vertical wall is an important factor to be considered in the design of coastal structures. The existing models to estimate the wave pressure in engineering design are limited to the third-order solution ([Hsu et al., 1979]). In this paper, an analytical solution up to the fifth-order is derived through perturbation approximation. This analytical closed-form solution is used to investigate the contributions of the higher-order components in short-crested waves. It is found that fifth-order components significantly affect the change of pressure, especially in shallow water and larger waves.  相似文献   

5.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

6.
A floating breakwater produces less environmental impact, but is easily destroyed by large waves. In this paper, the spar buoy floating breakwater is introduced with a study on the wave reflection and transmission characteristics and mooring line tension induced by the waves. Mei (The Applied Dynamics of Ocean Surface Waves, Wiley, New York (1983) 740 p) proposed a theoretical solution for the reflection and transmission coefficients as the wave propagates through a one-layer slotted barrier. For a multiple-layer fence system, the analytical solution is proposed linearly. The results show that the theoretical computations agree well with the experimental trends. For a multiple-layer fence system, the transmission coefficients become maximal as the layer spacing to wavelength ratio moves to 1/2. Conversely, the coefficients become minimal, as the ratio moves to 0.3. To estimate the maximum tension of the mooring line, both numerical calculations and laboratory experiments were executed. The numerical calculation results were similar to the experimental results.  相似文献   

7.
In this work, we carried out an asymptotic analysis, up to the second order in a regular expansion, of the interaction of linear long waves with an impermeable, fixed, submerged breakwater composed of wavy surfaces. Below the floating breakwater, there is also a step with a wavy surface. The undulating surfaces are described by sinusoidal profiles. The effects of three different geometric parameters — the amplitude of the wavy surfaces and the submerged length and width of the structure — on the reflection and transmission coefficients are analyzed. The hydrodynamic forces are also determined. The governing equations are expressed in dimensionless form. Using the domain perturbation method, the small wavy surfaces of the breakwater are linearized. The wavy surfaces of the breakwater generate larger values of the reflection coefficient than those obtained for breakwaters with flat surfaces, and the largest values of this coefficient are obtained when the length of the breakwater is of the same order of magnitude as the wavelength. The asymptotic solution is compared with the theoretical solutions that have been reported in the specialized literature and with a numerical solution. The present mathematical model can be used as a practical reference for the selection of the geometric configuration of a submerged floating breakwater under shallow flow conditions.  相似文献   

8.
Wave interaction with a wave absorbing double curtain-wall breakwater   总被引:3,自引:0,他引:3  
Yong Liu  Yu-cheng Li 《Ocean Engineering》2011,38(10):1237-1245
This study examines the hydrodynamic performance of a wave absorbing double curtain-wall breakwater. The breakwater consists of a seaward perforated wall and a shoreward impermeable wall. Both walls extend from above the seawater to some distance above the seabed. Then the below gap allows the seawater exchange, the sediment transport and the fish passage. By means of the eigenfunction expansion method and a least square approach, a linear analytical solution is developed for the interaction of water waves with the breakwater. Then the reflection coefficient, the transmission coefficient and the wave forces acting on the walls are calculated. The numerical results obtained for limiting cases agree very well with previous predictions for a single partially immersed impermeable wall, the double partially immersed impermeable walls and the bottom-standing Jarlan-type breakwater. The predicted reflection coefficients for the present breakwater also agree reasonable with previous experimental results. Numerical results show that with appropriate structure parameters, the reflection and transmission coefficients of the breakwater may be both below 0.5 at a wide range of the relative water depth. At the same time, the magnitude of wave force acting on each wall is small. This is significant for practical engineering.  相似文献   

9.
《Coastal Engineering》1999,38(3):167-176
An existing 2D method for separating incident and reflected waves over a horizontal bed [Frigaard, P., Brorsen, M., 1995. A time domain method for separating incident and reflected irregular waves. Coastal Eng., 24, 205–215.] is modified to account for normally incident linear waves propagating over a bed with arbitrary 2D bathymetry. Linear shoaling is used to determine the amplitude and phase change between two measurement positions; thereafter the existing technique can be applied. Comparisons between the existing and modified methods are made using numerically simulated data. Errors in the reflection coefficient are found to be small for large reflection coefficients, but may become large if reflection is low. However, if an accurate assessment of the amplitude of the incident and reflected wave trains is required, the bathymetry must be accounted for in order to avoid significant errors (up to 90% for cases considered).  相似文献   

10.
Wave reflection from partially perforated-wall caisson breakwater   总被引:2,自引:0,他引:2  
In 1995, Suh and Park developed a numerical model that computes the reflection of regular waves from a fully perforated-wall caisson breakwater. This paper describes how to apply this model to a partially perforated-wall caisson and irregular waves. To examine the performance of the model, existing experimental data are used for regular waves, while a laboratory experiment is conducted in this study for irregular waves. The numerical model based on a linear wave theory tends to over-predict the reflection coefficient of regular waves as the wave nonlinearity increases, but such an over-prediction is not observed in the case of irregular waves. For both regular and irregular waves, the numerical model slightly over- and under-predicts the reflection coefficients at larger and smaller values, respectively, because the model neglects the evanescent waves near the breakwater.  相似文献   

11.
Long wave reflection from submerged trapezoidal breakwaters   总被引:1,自引:0,他引:1  
This study addresses the reflection and transmission of long waves from a trapezoidal breakwater and a series of trapezoidal breakwaters, using the matching method. A systematic shape transfer is derived to determine wave reflection and transmission. The peak Bragg reflection of long waves from a series of trapezoidal breakwaters is shifted toward low frequency. In spite of the spacing between any pair of breakwaters, the top plane width and the arrangement of the series of breakwaters are found to be the two major parameters in designing multiply composite Bragg breakwaters.  相似文献   

12.
Rayleigh expansion is used to study the water-wave interaction with a row of pile breakwater in finite water depth. Evanescent waves, the wave energy dissipated on the fluid resistance and the thickness of the breakwater are totally included in the model. The formulae of wave reflection and transmission coefficients are obtained. The accuracy of the present model is verified by a comparison with existing results. It is found that the predicted wave reflection and transmission coefficients for the zero order are all highly consistent with the experimental data (Hagiwara, 1984; Isaacson et al., 1998) and plane wave solutions (Zhu, 2011). The losses of the wave energy for the fluid passing through slits play an important role, which removes the phenomena of enhanced wave transmission.  相似文献   

13.
Interaction of oblique waves with infinite number of perforated caissons   总被引:2,自引:0,他引:2  
An analytic solution based on the division of the fluid domain is developed for the interaction of obliquely incident waves with infinite number of perforated caissons. The whole fluid domain is firstly divided into infinite sub-domains according to the division of structures, and subsequently eigenfunction expansion is employed to represent the velocity potential in each domain. A phase relation is utilized for the analysis of wave oscillation in each caisson, and the character of structure geometry is considered in setting up the mathematical model of reflection waves. The reflection waves from the present analysis include many propagation waves traveling in different directions when the incident wave frequency is high. Benchmark examinations show that the continuous condition of water particle velocity is satisfied at the front walls of caissons, and the reflection coefficients keep agreement with the energy conservation relation very well when porous effect parameter is infinite. Numerical results show that the reflection coefficients of obliquely incident waves are smaller when the length of caissons is shorter at low frequency. The wave reflection coefficients and the wave forces normal to caissons decrease and the wave forces along caissons increase with the increase of the wave incident angle.  相似文献   

14.
In the present study, the effect of shear current on the propagation of flexural gravity waves is analyzed under the assumptions of linearized shallow-water theory. Explicit expressions for the reflection and transmission coefficients associated with flexural gravity wave scattering by a step discontinuity in both water depth and current speed are derived. Further, trapping and scattering of flexural gravity waves by a jet-like shear current with a top-hat profile are examined and certain limiting conditions for the waves to exist are derived. The effects of change in water depth, current speed, incident wavelength and the angle of incidence on the group and phase velocities as well as on the reflection and transmission characteristics are analyzed through different numerical results.  相似文献   

15.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(14-15):1965-1976
This study examines the reflection of obliquely incident waves by an infinite array of partially perforated caissons. Based on the linear potential theory, an analytical solution of the present problem was developed by means of the matched eigenfunction expansion method. The solution was obtained in a single strip consisting of the semi-infinite narrow region in front of a caisson and the fluid domain inside this caisson. It was then extended to the whole fluid domain by using the periodicities of the structure and the incident waves along the length of the caissons. The present model was validated by comparing the reflection coefficients of several limiting cases with the corresponding results obtained by previous researchers. Numerical experiments were also conducted to examine the variations of the reflection coefficient versus its main effect factors. The numerical results indicate the differences between the present model and the previous limiting cases, and some helpful results are recommended for practical engineering.  相似文献   

16.
《Coastal Engineering》2004,51(3):223-236
A computational model is developed to investigate the wave damping characteristics of a periodic array of porous bars. The transmission and reflection coefficients as well as the wave energy dissipation are evaluated relating to the physical properties and geometric factors of bars. It is shown that the porosity, number, width and height of bars all play important roles in the wave damping characteristics, compared to other factors such as the intrinsic permeability. It is observed that like impermeable bars, permeable bars display Bragg phenomenon. However, Bragg reflection produced by permeable bars is smaller than that by impermeable bars. Permeable bars reflect smaller waves, transmit smaller waves and dissipate more wave energy. It is indicated that if the porosity increases, both the reflection and transmission coefficients decrease and more wave energy is dissipated. Further, it is found that the porosity controls the magnitude, but not the oscillation frequency of the reflection coefficient, which depends only on the number of bars.  相似文献   

17.
Zhenhua Huang   《Ocean Engineering》2007,34(11-12):1584-1591
Experimental results are reported on the wave reflection from and transmission through one row or two rows of closely spaced rectangular cylinders. An empirical expression is proposed for the friction factor which models the head loss due to closely spaced rectangular cylinders. Algebraic expressions are presented to calculate the reflection and transmission coefficients of regular waves for a single slotted wall or double slotted walls. The model is validated by the published and present experimental results. The proposed method can be used for the preliminary design of slotted-wall breakwaters.  相似文献   

18.
Simplified analytical solutions are presented to model the interaction of linear waves with absorbing-type caisson breakwaters, which possess one, or two, perforated or slotted front faces which result in one, or two, interior fluid regions (chambers). The perforated/slotted surfaces are idealized as thin porous plates. Energy dissipation in the interior fluid region(s) inside the breakwater is modelled through a damping function. Under the assumption of potential flow and linear wave theory a boundary-value problem may then be formulated to describe wave interaction with the idealized structure. A solution to this simplified problem may be obtained by an eigenfunction expansion technique and an explicit analytical expression may be obtained for the reflected wave height. Using the experimental work of previous authors, damping coefficients are determined for both single and double chamber absorbing-type caisson breakwaters. Based on the damping for a single perforated-wall breakwater, a methodology is proposed to enable the estimation of the damping coefficients for a breakwater with two chambers. The theoretical predictions of the reflection coefficients for the two-chamber structures using the present model are compared with those obtained from laboratory experiments by other authors. It is found that the inclusion of the damping in the interior fluid region gives rise to improved agreement between theory and experiment.  相似文献   

19.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

20.
O.S. Rageh 《Ocean Engineering》2009,36(14):1112-1118
The efficiency of the breakwater, which consists of caissons supported on two or three rows of piles, was studied using physical models. The efficiency of the breakwater is presented as a function of the transmission, reflection and the wave energy dissipation coefficients. Regular waves with wide ranges of wave heights and periods and constant water depth were used. Different characteristics of the caisson structure and the supporting pile system were also tested. It was found that, the transmission coefficient (kt) decreases with increasing the relative breakwater draft D/L, increasing the relative breakwater width B/h, and decreasing the piles gap-diameter ratio G/d. It is possible to achieve kt values less than 0.25 when D/L≥0.1. The reflection coefficient takes the opposite trend especially when D/L≤0.15. The proposed breakwater dissipates about 10-25% of the incident wave energy. Also, simple empirical equations are developed for estimating the wave transmission and reflection. In addition, the proposed breakwater model is efficient compared with other floating breakwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号