共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
The latest release of MODFLOW 6, the current core version of the MODFLOW groundwater modeling software, debuted a new package dubbed the “mover” (MVR). Using a generalized approach, MVR facilitates the transfer of water among any arbitrary combination of simulated features (i.e., pumping wells, stream, drains, lakes, etc.) within a MODFLOW 6 simulation. Four “rules” controlling the amount of water transferred from a providing feature to a receiving feature are currently available. In this way, MVR can represent natural connections between features, for example, streams entering or exiting lakes, and perhaps more interestingly, it also can transfer water among simulated features to more accurately simulate water management. An example model representative of an agricultural setting demonstrates some of the available MVR connections. For example, an irrigation event that transfers surface water from an irrigation delivery ditch to multiple cropped areas demonstrates a “one-to-many” connection that is possible within MVR. Conversely, irrigation or precipitation runoff from multiple fields may be routed to a particular stream segment using “many-to-one” MVR connections. MVR supports many additional connection types, several of which are demonstrated by the included example problem. 相似文献
3.
A new method based on a graphics processing unit (GPU) library is proposed in the paper to parallelize MODFLOW. Two programs, GetAb_CG and CG_GPU, have been developed to reorganize the equations in MODFLOW and solve them with the GPU library. Experimental tests using the NVIDIA Tesla C1060 show that a 1.6‐ to 10.6‐fold speedup can be achieved for models with more than 105 cells. The efficiency can be further improved by using up‐to‐date GPU devices. 相似文献
4.
SEEPAGE, a new MODFLOW DRAIN package 总被引:2,自引:0,他引:2
The prediction of the location of ground water discharge areas is a key aspect for the protection and (re)development of ground water-dependent wetlands. Ground water discharge areas can be simulated with MODFLOW using the DRAIN package by setting the drain level equal to the topography, while the conductance is mostly set to an arbitrary high value. However, conceptual and practical problems arise in the calculation of the ground water discharge by the DRAIN package as calculated water tables above the land surface, difficult parameterization of the conductance, and large water balance errors. To overcome these problems, a new SEEPAGE package for MODFLOW is proposed. The basic idea of this package is an adaptable constant head cell. It has a variable head, unless the ground water rises above the seepage level, in which case it has a constant head cell. The estimation of the ground water discharge location along a homogeneous, isotropic, linear sloping profile is used to verify the model and to compare it to the DRAIN solution. In an application to three basins in Belgium, it is shown that the SEEPAGE package can be used in combination with the DRAIN package in situations where an upper boundary for a free water table and additional resistance for drainage is required. It is clearly demonstrated that the identification and delineation of regional ground water discharge areas is more accurate using the SEEPAGE package. 相似文献
5.
MODFLOW 2000 head uncertainty,a first-order second moment method 总被引:1,自引:0,他引:1
A computationally efficient method to estimate the variance and covariance in piezometric head results computed through MODFLOW 2000 using a first-order second moment (FOSM) approach is presented. This methodology employs a first-order Taylor series expansion to combine model sensitivity with uncertainty in geologic data. MODFLOW 2000 is used to calculate both the ground water head and the sensitivity of head to changes in input data. From a limited number of samples, geologic data are extrapolated and their associated uncertainties are computed through a conditional probability calculation. Combining the spatially related sensitivity and input uncertainty produces the variance-covariance matrix, the diagonal of which is used to yield the standard deviation in MODFLOW 2000 head. The variance in piezometric head can be used for calibrating the model, estimating confidence intervals, directing exploration, and evaluating the reliability of a design. A case study illustrates the approach, where aquifer transmissivity is the spatially related uncertain geologic input data. The FOSM methodology is shown to be applicable for calculating output uncertainty for (1) spatially related input and output data, and (2) multiple input parameters (transmissivity and recharge). 相似文献
6.
RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. 相似文献
7.
8.
Hydrostratigraphic modeling of a complex,glacial-drift aquifer system for importation into MODFLOW 总被引:4,自引:0,他引:4
Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2,200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems. 相似文献
9.
10.
11.
Investigating changes in an aquifer system often involves comparison of observed heads from different synoptic measurements, generally with potentiometric surfaces developed by hand or a statistical approach. Alternatively, head‐specified MODFLOW models, in which constant head cells simulate observed heads, generate gridded potentiometric surfaces that explicitly account for Darcy's Law and mass balance. We developed a transient head‐specified MODFLOW model for the stratified Cambrian‐Ordovician sandstone aquifer system of northeastern Illinois to analyze flow within its 275 m deep cone of depression. Potentiometric surfaces were developed using static heads from production wells regardless of open interval; hence assuming no vertical head difference. This assumption was tested against steady‐state, head‐specified models of each sandstone strata for 1980 and 2014. The results indicate that the original conceptual model was appropriate in 1980 but not 2014, where a vertical head difference had developed at the center of the cone of depression. For earlier years, when the head difference was minimal, the transient head‐specified model compared well with a traditional, flow‐specified model. In later years, the transient head‐specified model overestimated removal of water from storage. MODFLOW facilitates the development of a time‐series of potentiometric surfaces and can easily be modified to test the impacts of different conceptual models, such as assumptions on vertical head differences. For this study of a deep confined aquifer, MODFLOW also offers advantages in generating potentiometric surfaces and flow fields over statistical interpolation techniques, although future research is needed to assess its performance in other settings. 相似文献
12.
Technological advances, by facilitating extensive data collection, better data sharing, formulation of sophisticated methods, and development of complex models, have brought hydrologic research to a whole new level. Despite these obvious advances, there are also concerns about their general use in practice. On the one hand, it is natural to develop more complex models than perhaps needed (i.e. representations having too many parameters and requiring too much data); on the other hand, it is often difficult to ‘translate’ results from one specific situation to another. Recent studies have addressed these concerns, albeit in different forms, such as dominant processes, thresholds, model integration, and model simplification. A common aspect in some of these studies is that they recognize the need for a globally agreed upon ‘classification system’ in hydrology. The present study explores this classification issue further from a simple phase‐space data reconstruction perspective. The reconstruction involves representation of the given multidimensional hydrologic system using only an available single‐variable series through a delay coordinate procedure. The ‘extent of complexity’ of the system (defined especially in the context of variability of relevant data) is identified by the ‘region of attraction of trajectories’ in the phase space, which is then used to classify the system as potentially low‐, medium‐ or high‐dimensional. A host of river‐related data, representing different geographic and climatic regions, temporal scales, and processes, are studied. Yielding ‘attractors’ that range from ‘very clear’ ones to ‘very blurred’ ones, depending on data, the results indicate the usefulness of this simple reconstruction concept for studying hydrologic system complexity and classification. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
13.
14.
Saltwater intrusion problems have been usually tackled through analytical models because of its simplicity, easy implementation and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, which neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. This paper provides insight into the validity of a sharp‐interface approximation defined from a steady state solution when applied to transient seawater intrusion problems. The validation tests have been performed on a 3D unconfined synthetic aquifer, which include spatial and temporal distribution of recharge and pumping wells. Using a change of variable, the governing equation of the steady state sharp‐interface problem can be written with the same structure of the steady confined groundwater flow equation as a function of a single potential variable (?). We propose to approach also the transient problem solving a single potential equation (using also the ? variable) with the same structure of the confined groundwater flow equation. It will allow solving the problem by using the classical MODFLOW code. We have used the parameter estimation model PEST to calibrate the parameters of the transient sharp‐interface equation. We show how after the calibration process, the sharp‐interface approach may provide accurate enough results when applied to transient problems and improve the steady state results, thus avoiding the need of implementing a density‐dependent model and reducing the computational cost. This has been proved by comparing results with those obtained using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. The comparison was performed in terms of piezometric heads, seawater penetration, transition zone width and critical pumping rates. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
15.
The impact of potential future climate change scenarios on streamflow and evapotranspiration (ET) in a mountainous Hawaii watershed was studied using the distributed hydrology soil vegetation model (DHSVM). The hydrologic response of the watershed was simulated for 43 years for different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and + 6.4 °C) and precipitation (±5%, ±10% and ±20%) on the basis of the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under current, B1, A1B1 and A1F1 emission scenarios. Vegetation leaf conductance and leaf area index were modified to reflect the increase in CO2 concentration. The relative departure of streamflow and ET from their levels during the reference scenarios was calculated on a monthly and annual basis. Results of this study indicate that the streamflow and ET are less sensitive to changes in temperature compared with changes in precipitation. However, temperature increase coupled with precipitation showed significant effect on ET and streamflow. Changes in leaf conductance and leaf area index with increasing CO2 concentration under A1F1 scenario had a significant effect on ET and subsequently on streamflow. Evapotranspiration is less sensitive than streamflow for a similar level of change in precipitation. On the basis of a range of climate change scenarios, DHSVM predicted a change in ET by ±10% and streamflow between ?51% and 90%. From the six ensemble mean scenarios for AR4 A1B, simulations suggest reduction in streamflow by 6.7% to 17.2%. These reductions would produce severe impact on water availability in the region. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
An opportunity to study the effect of a bushfire on the hydrology of a forested catchment was presented when a bushfire burned through an area of approximately 280 square miles in the Snowy Mountains region of south-eastern New South Wales, Australia, in March 1965. The effect of the fire upon the hydrologic characteristics of two catchments for which streamflow records were available before and after the fire was examined and it was shown that:
- 1.
- (i) there were pronounced changes in the shape of the flood hydrographs of one catchment, 相似文献
17.
Rainfall is the major source for groundwater recharge in basins areas of central region of India. Now a day, the river basins are experiencing acute shortage of water which has resulted in lowering of groundwater level and drying up of water bodies. In order to maintain water sustainability; a composite hydrologic index was developed in the Betwa basin of Madhya Pradesh and Uttar Pradesh states, India. The index was developed using principal component analysis through hydrologic, topographic as well as geographic parameters derived from the Soil and Water Assessment Tool and MODFLOW model. The geomorphological parameters were categorized, on the basis of groundwater recharge potential and weight ranged from 1 to 4. The geomorphologic parameters, that is, soil type (T), slope (S), runoff ratio (R), and evapotranspiration (ET) were integrated into a single indicator of composite hydrologic index. Soil type and ET were the major factors that directly affected the groundwater recharge. These two parameters together explained 86% of total variability in the data. Based on the analysis of the four parameters that affected groundwater recharge, composite hydrologic index (CHI) was classified into very good, good, moderate, and low grade. The CHI was statistically validated using standardization methods. The index was developed as a water management tool to measure a sustainability state relative to a groundwater recharge potential, which allows for spatial and temporal comparison. This index will be helpful in natural resource management and will improve socioeconomic status of human population inhibiting in the semi-arid region. 相似文献
18.
The Soil and Water Assessment Tool (SWAT) is a physically‐based hydrologic model developed for agricultural watersheds, which has been infrequently validated for forested watersheds, particularly those with deep overwinter snow accumulation and abundant lakes and wetlands. The goal of this study was to determine the applicability of SWAT for modelling streamflow in two watersheds of the Ontonagon River basin of northern Michigan which differ in proportion of wetland and lake area. The forest‐dominated East Branch watershed contains 17% wetland and lake area, whereas the wetland/lake‐dominated Middle Branch watershed contains 26% wetland and lake area. The specific objectives were to: (1) calibrate and validate SWAT models for the East Branch and Middle Branch watersheds to simulate monthly stream flow, and (2) compare the effects of wetland and lake abundance on the magnitude and timing of streamflow. Model calibration and validation was satisfactory, as determined by deviation of discharge D and Nash and Sutcliffe coefficient values E that compared simulated monthly mean discharge versus measured monthly mean discharge. Streamflow simulation discrepancies occurred during summer and fall months and dry years. Several snow melting parameters were found to be critical for the SWAT simulation: TIMP (snow temperature lag factor) and SMFMX and SMFMN (melting factors). Snow melting parameters were not transferable between adjacent watersheds. Differences in seasonal pattern of long‐term monthly streamflow were found, with the forest‐dominated watershed having a higher peak flow during April but a lower flow during the remainder of the year in comparison to the wetland and lake‐dominated watershed. The results suggested that a greater proportion of wetland and lake area increases the capacity of a watershed to impound surface runoff and to delay storm and snow melting events. Representation of wetlands and lakes in a watershed model is required to simulate monthly stream flow in a wetland/lake‐dominated watershed. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
Nancy England April L. James Krystopher J. Chutko Richard S. Pyrce Huaxia Yao 《水文研究》2019,33(6):905-919
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments. 相似文献
20.
Hydrologic,geomorphic and climatic processes controlling willow establishment in a montane ecosystem
David J. Cooper Joyce Dickens N. Thompson Hobbs Lindsey Christensen Laura Landrum 《水文研究》2006,20(8):1845-1864
Willow communities dominate mid‐elevation riparian areas throughout the Rocky Mountains of North America. However, many willow stands are rapidly declining in aerial cover and individual plants in stature. A poor understanding of the processes that control willow establishment hinders identifying the causes of this decline. We analysed the processes that have facilitated or limited willow establishment over the last half of the 20th century on two large floodplains in Rocky Mountain National Park in Colorado by addressing two questions: (1) How does hydrologic regime control willow establishment on different fluvial landforms? (2) How might climate‐driven variations in hydrologic regime affect future willow establishment? We precisely aged willows on the three most common fluvial landforms, stream point bars, drained beaver ponds, and abandoned channels, and statistically related establishment dates to patterns of annual stream peak flow. The role of peak flow on willow establishment varied significantly by landform. Willow recruitment had occurred nearly every year on point bars. In former beaver complexes, most willows had established following dam breaches, whereas willows had established on abandoned channels for several years following channel avulsion. Establishment on point bars and abandoned channels was driven by peak flows of 2‐ to 5‐year return intervals, whereas in abandoned beaver ponds most establishment was associated with flow events of >5‐year return interval. Models of climate change suggest that temperatures will increase and precipitation seasonality will shift over the coming decades in the Rocky Mountains, leading to earlier spring runoff, lower summer and fall flows, decreased snowpack and decreased soil moisture. Such changes are likely to diminish opportunities for willow establishment. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献