首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》1995,10(1):97-109
Overbank sediment sequences in central Mexico display vertical changes in chemistry which can be related to both anthropogenic contamination and natural geological sources and processes. They also show significant lateral chemical variation, at both local and regional levels, which makes the design of a sampling strategy for regional geochemical mapping or contamination studies difficult. This variation is particularly pronounced in drainage basins which have been contaminated by mining activity and limits the use of overbank sediment as a systematic regional geochemical mapping medium. To be used with confidence, overbank sediments require detailed studies of fluvial geomorphology and history, accompanied by accurate age dating. Active drainage sediments are a more viable alternative in areas of historical mining activity, but must be examined carefully in the light of the regional background where levels of contamination are low or the contaminants are buried within the river floodplain.  相似文献   

2.
A geochemical survey of Belgium and Luxembourg was carried out as part of an international research project entitled ‘Regional geochemical mapping of Western Europe towards the year 2000'. The aim of this research was to map regional background geochemical patterns based on pristine or at least pre-industrial overbank samples and to deduce regional information on the degree of environmental pollution of floodplain and present-day river sediments. Over the entire study area (about 33,000 km2), 66 overbank sites have been sampled. Catchment areas range between 60 and 600 km2. At each site an overbank profile has been dug out in the immediate vicinity of the river and described in detail. A first composite sample was taken 5–25 cm below the surface. This sample is supposed to represent deposition over the last centuries. Human interferences in this interval are often inferable based on changed sedimentary characteristics and the presence of anthropogenic particles such as charcoal, slags and brick fragments. A second composite sample was taken at depth, usually >1.5 m below the surface over an interval of about 20 cm. In most sites, the profile characteristics allowed to assume pre-industrial or even pristine conditions for this lower overbank sample. In some profiles this was confirmed by 14C-dating and/or by the absence of anthropogenic particles. Finally, a present-day stream sediment was sampled on the site to infer the actual pollution status. After drying at 80°C, disaggregation and sieving, the <125 μm fractions of the three sediment samples were analysed by XRF for major elements and several trace elements. Lower overbank samples generally show a direct link with the geological substrate and allow to assess natural background concentrations. Results from the mapping exercise as well as from the statistical analyses display a clear contrast between the northern part of Belgium where Cenozoic unconsolidated sandy and silty formations dominate which are especially vulnerable for erosion, and the southern part of Belgium and Luxembourg where Paleozoic and Mesozoic sandstones, carbonates, marls and shales are the prevalent lithologies. Here the shales are the most intensively eroded lithologies. This is especially reflected in the element patterns of Al2O3, MgO, K2O, Ga, Ni, Rb, Sc and V which negatively correlate with SiO2. Despite the human related pollution, the geological contrast between north and south Belgium is still recognisable in the geochemical pattern of the upper overbank and present-day stream sediment samples for the above-mentioned elements. Furthermore there is a clear increase in heavy metal contents (Zn, Cd, Pb, Cu), As and in certain locations in Ba from the lower to the upper overbank sediment, as well as to the present-day stream sediment. The relative increase in element content allows to assess the degree of pollution and helps to define those drainage areas where more detailed research is needed.  相似文献   

3.
 Sediment geochemistry of a shallow (6-m average) reservoir (Lake Waco) was evaluated for the spatial distribution of major and trace elements. Sixty bottom and core samples along a 21-km transect within the reservoir, 18 overbank sediment samples, and 8 rock types in the drainage area were collected and analyzed for major (Al, Ca, Fe) and trace elements (As, Ba, Cr, Cu, Hg, Mn, Ni, Pb, Sr, V, Zn). Elemental concentrations in the reservoir sediments closely correspond to concentrations in the regional rocks and represent a mixture of overbank sediment composition of the tributaries. Elemental concentrations were statistically regressed against Al concentrations in order to establish regional baseline levels and thereby distinguish natural from anthropogenic sources. Spatial geochemical trends, considered in terms of element-to-Al ratio versus V-to-Al ratio, relate to the natural and anthropogenic sources contributing to the elemental concentrations. The spatial elemental distribution in the reservoir, which receive sediments from two mineralogically contrasting basins, reflect textural and mineralogical transition within the reservoir and suggest a progressive mixing of sediment from the tributaries. The spatial elemental distribution and sediment texture suggest that the sediment-source, which determines the sediment-type, has a greater influence on the major- and trace-element distributions in shallow reservoir sediments than bathymetry. Received: 25 September 1997 · Accepted: 3 February 1998  相似文献   

4.
The geochemical study of alluvial sediments allows to reconstruct pollution through time. Geochemical and sedimentological variations recorded in 40 vertical overbank sediment profiles from Belgium and Luxembourg can be classified in three dominant pattern types:• type 1 profiles with dominantly non-anthropogenically influenced geochemical distribution patterns. These profiles are devoid of anthropogenic particles such as charcoal, plastic, brick and slag fragments, with the exception, in some cases, of their uppermost parts. Background concentrations thus are displayed throughout the profile (subtype 1A). However, in this group, profiles displaying anomalous values caused by the presence of heavy minerals (subtype 1B) or by base metal mineralisations in the catchment (subtype 1C) also occur;• type 2 profiles displaying clear evidence of anthropogenic influences. Most of these profiles display a gradual increase in heavy metal content in their upper part, with values doubling or tripling (subtype 2A). However, other profiles display a dramatic increase in pollution-related elements caused by past or present-day heavy industrial activities in the catchment (subtype 2B). Here also the sedimentological patterns reflect the influence of the industrial activities;• type 3 profiles contain features related to pedogenetic translocations of mobile elements. Apart from classical pedogenetic features such as illuviation/eluviation, the mobility of As and Cd is of particular importance. From a sedimentological point of view, these profiles do not necessarily differ from type 1 or 2 profiles.It should be noted that in some profiles, pattern types can be superimposed. Type 2B profiles are of particular environmental concern, because the potential release of heavy metals may have consequences for agricultural activities or groundwater contamination in the catchment. Furthermore, reworking of polluted sediments temporarily stored in the alluvial plain can also have negative effects on the ecosystem.  相似文献   

5.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

6.
Conventional stream sediment sampling in which sediments are taken from the active channels during reconnaissance regional geochemical surveys in gold exploration has over the years failed to delineate prospective target zones in northern Ghana, where the relict is flat. Whereas the technique has been successful in the south western Ghana, which is characterised by moderate to high relief, generally the savannah north is associated with low relief, commonly with flat topographies and generally decoupled stream channels. Geochemical comparison of active stream and overbank sediments in this study demonstrate that active stream channels may contain contaminated materials of recent origin, but overbank sediments, except for the uppermost horizons, represent alluvial regolith of earlier depositional cycles over time. Based on gold value repeatability, composite samples taken from the overbank sediment layers were relatively less erratic and are considered to be an appropriate geochemical medium in delineating potential regional gold targets for follow up. The results show that overbank sediment sampling can be used as a cost-effective method to define broad anomalous zones; and the technique must be considered useful during reconnaissance geochemical surveys in the savannah regions.  相似文献   

7.
Parts of the flood plains north of the Harz Mountains are contaminated with heavy metals, such as Pb, Cu, Zn and Cd derived from mining, which has been carried out in the Harz Mts. since the Middle Ages. It is important to know the mobility of the heavy metals in these overbank sediments in order to estimate the danger to the environment arising from this source. This paper deals with the effect of pH on heavy-metal mobility, using a constant-pH method. The investigations were carried out on an overbank sediment profile near Salzgitter Bad, north of the Harz Mts. The mobility of the heavy metals in the overbank sediment profile is described as a function of pH and depth. Besides the mobile heavy-metal fraction at a certain pH, the buffering capacity of the sediment at this pH must be taken into consideration. The different layers of the overbank sediment profile show distinct differences in buffering capacity and a natural pH harrier could be identified in the upper part of the profile. Therefore, to avoid increasing heavy-metal mobility the natural layering of the overbank sediment profile should not be disturbed. Two different kinds of desorption experiments at constant pH are also discussed, as well as the conversion of the heavy-metal species in the ore minerals into the species in the sediment.  相似文献   

8.
Recent geochemical studies provide evidence that changes in vertical distributions of nutrients in lake sediments are driven by anthropogenic activities, based primarily on trends of increasing concentrations in upper sediment layers. However, the present study shows that vertical concentration profiles of C, N and P in lake sediments can be higher in the upper, most recently deposited sediment strata, driven largely by natural diagenetic processes and not eutrophication alone. Sediment cores from 14 different lakes in New Zealand and China were examined ranging from oligotrophic to highly eutrophic and shallow to deep, and it was found that the shape of vertical profiles of total P, a key nutrient for lake productivity, can be similar in sediments across gradients of widely differing trophic status. Empirical and mechanistic diagenesis steady state profile models were derived and applied to describe the vertical distribution of C, N and P in the sediments. These models, which focus on large scale temporal (decades) and spatial (up to 35 cm in the vertical) processes, revealed that density-differentiated burial and biodiffusive mixing, were strongly correlated with vertical concentration gradients of sediment C, N and P content, whereas lake trophic status was not. A sensitivity analysis of parameters included in the diagenetic model further showed that the processes including flux of organic matter to the sediment–water interface, burial (net sedimentation), breakdown of organic matter and biodiffusion all can significantly influence the vertical distribution of sediment P content. It was concluded that geochemical studies attempting to evaluate drivers of the vertical distribution of sediment C, N and P content in lake sediments should also account for the natural diagenetic drivers of vertical concentration gradients, assisted with application of similar models to those presented in this study. This would include quantification of key sediment diagenesis model parameters to separate out the influence of anthropogenic activities.  相似文献   

9.
Overbank and medium-order stream sediment samples were collected in Belgium and Luxembourg from 66 sampling locations (area of about 33,000 km2) and analysed for major and trace elements among which Zn, Pb, Cu and As. At each sampling location large bulk samples were taken, namely in the lower (normally at ≥1.5 m depth, over an interval of about 20–40 cm) and upper (normally upper 5–25 cm) parts of the overbank profiles and from the stream sediments. Furthermore, at a number of these sites, a detailed geochemical analysis of vertical overbank sediment profiles (sampling intervals of 10–20 cm) was subsequently carried out to unravel element variations through time and to help in the overall evaluation. For most sampled sections evidences such as 14C-dating and the absence of anthropogenic particles point towards a pre-industrial and often pristine origin of the lower overbank sediment samples. From the latter bulk samples, mean background concentrations were deduced. They reveal the existence of significant differences between the northern and southern part of Belgium (incl. Luxembourg) which relate to the difference in geological substrate. In the north dominantly non-lithified Quaternary and Tertiary sands, marls and clays occur while in the south Palaeozoic sandstones, shales and carbonate rocks outcrop. Consequently separate mean background values were calculated for the two areas. In the southern study area, some anomalous metal concentrations have been recorded in pre-industrial sediments. They are derived from mineralised Palaeozoic rocks, a feature which could be of interest for base metal exploration. In the upper overbank and stream sediments, in general, higher heavy metal and As contents were recorded with highest values in areas with metal mining, metal melting and cokes treatment industries. By comparing the trace element concentrations of the upper overbank or stream sediment samples with the concentrations detected in the lower overbank samples at each of the sampling locations, and by evaluating the vertical distribution patterns where available, the degree of pollution of the alluvial plain and the present-day stream sediments can be assessed. From this exercise, it is clear that highest pollution occurs in the northern part of Belgium, which relates to its high population density and industrial development.  相似文献   

10.
Overbank sediments of the Geul River (East Belgium) are highly contaminated by the heavy metals Pb, Zn, and Cd due to former Pb-Zn mining activities in the drainage basin. Geochemical variations in vertical overbank sediment profiles sampled 1 km north of the mine tailings of Plombiéres allow metal fluxes back to the 17th century to be reconstructed. The vertical profiles are subdivided into three major units corresponding to different industrial periods based on sedimentological criteria as well as on the distribution of contaminants. Alluvial sediments with the highest heavy metal concentrations correspond to the major period of mining activity of the 19th century. The fact that Zn mining at the La Calamine open mine started before large-scale mining of the PbS-ZnS subsurface exploitations is reflected in the vertical profiles by an increase in Zn content before a marked increase in Pb and Cu. The regional extent of contamination in the alluvial deposits was evaluated on the basis of the geochemical analysis of sediments at depths of the 0–20 cm and 80–100 cm. Most of the upper samples are extremely contaminated. Significant local variations in heavy metal concentration in the lower samples are interpreted in terms of which overbank sediment horizon has been sampled at a depth of 80–100 cm. This indicates that blind sampling of overbank sediments to characterize the degree of contamination in shallow boreholes can give very erratic results.  相似文献   

11.
Thirty-four chemical elements, pH, total nitrogen, and total organic carbon were determined in 49 bottom sediment samples from the whole High Dam Lake in order to improve our understanding of geochemical characteristics of these sediments and geochemical patterns of trace elements and related feeding sources. The present study revealed that the lake were clearly discriminated into three portions in accordance with the sediment geochemistry and geographic position. Likewise, the analyzed elements in the entire lake sediments were classified into six geochemical association patterns that are indicative of the contributing geogenic and anthropogenic sources. As has been noted here, mineralogy, anthropogenic inputs, pH, and organic matter had significant roles in controlling the behavior, concentration, dispersion, and geochemical patterns of the trace elements in the lake sediments. Consequently, the elevated concentration of Bi, Cd, Co, Cr, Cu, Fe, Ga, Mn, Mo, Ni, Sc, V, Y, and Zn posed moderate contamination level in the sediments. At the same time, the enhancement of Ag, Se, and Te levels caused contamination up to very high levels. Admittedly, the contamination levels were generated by natural and human activities that are coming from the Nile basin countries. Despite progressive deterioration of these sediments, they still have economic applications.  相似文献   

12.
In this paper are discussed the baseline geochemical maps of elements harmful to human health, using concentration values of 2389 stream sediment samples collected over the Campania region (Southern Italy). Each sample was digested in aqua regia and analysed by ICP-MS. For compilation of baseline geochemical maps, a recently developed multifractal inverse distance weighted (lDW) interpolation method and spectral analysis (S-A) was applied, using a new geochemistry dedicated GIS software (GeoDAS). The aim of this study is to discriminate between the geogenic natural content (background) and the anthropogenic contribution in the collected sediments. The definition of background values, in contrast to baseline values, is very important in determining the extent of polluted areas in countries like Italy, where environmental legislation has not yet established intervention limits for stream sediments.  相似文献   

13.
In Scandinavia, most fluvial erosion takes place in the Quaternary glacial overburden at a restricted number of small source areas along individual drainage channels. As a consequence, a sample of active stream sediment is representative of only a very limited portion of the drainage area. This restriction makes stream sediment less reliable for regional exploration than generally expected. Overbank (levee or river-plain) sediment produced during large floods is an alternate more representative sampling medium. The sediment suspended during a flood has a much more widespread origin, and when the load is deposited upon the flood plain, nearly horizontal strata are formed and preserved at levels above the ordinary stream channel. A composite sample through a vertical section of such strata represents a great number of sediment sources that have been active at different times and forms an integrated sample of the entire catchment area. Because young sediments overlay older, the uppermost layers will be contaminated by pollutants in industrialized regions, but those at depth may remain pristine and will to a greater extent reflect the natural pre-industrial environment. In regional geochemical mapping, overbank sediment can be sampled at widely spaced sites, keeping costs per unit area low. Examples from Norway (1 sample station per 500 km2) show that overbank sediment produces broad geochemical patterns with high contrasts reflecting the bedrock geochemistry. Some patterns agree with known geological units and metallogenic provinces, but hitherto unknown major structures have also been indicated. A large Mo-deposit missed by a traditional stream survey is readily detected in the overbank sediment. It is concluded that overbank sediment is a promising alternate sample medium that should be tested in other physiographic regions.  相似文献   

14.
Identification of reliable background values of potentially toxic metals in sediments requires detailed integration of geochemical data with accurate sedimentological studies. Through analysis of 60 soil samples from the Pisa coastal plain, this study shows to what extent sediment provenance and facies characteristics may influence the natural distribution of potentially toxic metals (Cr, Ni, Cu, Zn, Pb) within alluvial and coastal sediments. Metals supplied to the alluvial plain are mostly concentrated within the finest sediment fraction (floodplain clays), while coarser crevasse and overbank deposits exhibit invariably lower metal contents. Beach-ridge sands display the lowest metal concentrations. Transport of ophiolitic detritus by the longshore drift may account for locally high Cr concentrations within beach deposits. Geochemical fingerprinting of individual facies associations in terms of natural metal contents results in the construction of a geologically-based geochemical map. This map offers a more reliable depiction of spatial distribution of background levels than interpolation techniques based uniquely upon statistical methods. Matching background values against metal concentrations from topsoil samples leads to the reliable assessment of the pollution status of Pisa coastal plain. Metal contents exceeding the threshold values designated for contaminated areas (Cr) simply reflect catchment geology, and are not the product of artificial contamination. On the other hand, anthropogenic disturbance may be detected even where metal contents (Pb, Cu) lie below the threshold values. The use of sedimentological criteria is presented here as a pragmatic tool to enhance predictability of natural metal contents in sediments, with obvious positive feedbacks for legislative purposes and environmental protection.  相似文献   

15.
To develop a technique of implementing global ultra-low density geochemical sampling and as a contribution to the International Geochemical Mapping Program (IGCP Project No. 259), an orientation study in the use of deep (lower-layer) overbank sediments was conducted in Jiangxi Province of Southeast China in 1989–1990. Ninety-four samples were collected at depths of 50 to 120 cm from overbank terraces at an average density of 1 site per 1800 km2. The total area of sampled catchment basins is approximately equivalent to 18% of Jiangxi Province. Most of the samples were collected at outflow sites of catchment basins with areas of 100 to 800 km2. The samples were analyzed for 39 elements.The representativity of wide-spaced lower-layer overbank sediment sampling is discussed from various perspectives; the following features have been observed: (1) Widespaced lower-layer overbank sediment data and the data from China's national geochemical mapping (RGNR) project show similar geochemical patterns for W, Sn, Pb, Cu and Zn. (2) The results of wide-spaced lower-layer overbank sediment sampling demonstrate that catchment basins with areas of 100 to 800 km2 are suitable sample site locations for the global geochemical reference network. (3) Wide-spaced lower-layer overbank sediment sampling is a fast and cost-effective way to identify geochemical provinces and has strategic significance in mineral exploration. (4) There is a significant correlation between the W content of wide-spaced lower-layer overbank sediment samples and the presence of W mineralizations within the catchment basins. (5) The distributions of Ni, Cr and V in wide-spaced lower-layer overbank sediment samples distinctly reveals the boundary between the Yangtze sedimentary platform and the South China Caledonian fold system in Jiangxi Province. (6) Distributions of Rb and Be coincide with the Yanshan granites, which are closely related to the major ore-forming episodes in Jiangxi Province.  相似文献   

16.
 Top and bottom samples of overbank sediments were collected at 43 sites within a 12 000 km2 area around the nickel smelter in Nikel and the ore roasting plant at Zapoljarnij, in northwestern Russia. In addition, three detailed overbank profiles were sampled in 10-cm sections from three catchments representing different levels of pollution. All samples were analysed for more than 30 elements by ICP-AES following aqua regia extraction. Results obtained show that overbank sediments represent natural (geogenic) background levels rather well. Although the major pollutants (Co, Cu, Ni and S) are strongly enriched at some places close to industry, overbank sediment is not especially well suited for mapping the extent of airborne contamination in the area. Co, Cu, Ni and S are mobile within the profile collected from the most polluted catchment. Received: 23 July 1996 · Accepted 18 October 1996  相似文献   

17.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

18.
The United States and other nations use the term natural conditions or reference conditions in legislation providing for the protection of aquatic ecosystems. Natural or reference conditions are generally used to describe environmental conditions in an aquatic resource before any human introduced pollution. The natural or reference conditions are used in establishing water quality criteria for protection of aquatic resources, helping classify aquatic resources within a regulatory category, and for assessing effectiveness of aquatic resource restoration actions. Regional scale geochemical mapping of stream sediments is available for many countries that when combined with exploratory data analysis and geospatial data can be used to establish screening level natural conditions for trace metals in stream sediments. This approach is applied to the Cook Inlet watershed in Alaska using the US Geological Survey National Geochemical Survey stream sediment trace metals data. Upper concentration limits are developed for As, Cr, Cu, Pb, Hg, Ni, and Zn in the Cook Inlet watershed to aid in screening sediments for potential anthropogenic contamination.  相似文献   

19.
《Applied Geochemistry》2006,21(1):58-82
This paper presents results of geochemical investigations of lake sediments from the karst lake An Loch Mór, Aran Islands, including the first highly resolved record of atmospheric Roman Pb pollution for Ireland. The natural Pb influx into the lake is largely contributed by 3 Pb components, which differ in their isotopic composition: detrital influx of Pb from the siliciclastic input, dissolved influx of Pb released by weathering of the local limestone, and dissolved influx of seawater Pb. The balance between the 3 Pb components varies in concert with the hydrological evolution of the lake. The influx of Pb in dissolved form is estimated by geochemical mass balance assuming that the siliciclastic influx is characterised by the Pb/Al-ratio of the Late Glacial clastic sediments. It typically accounts for 50–80% of total Pb input in the Holocene sediments of An Loch Mór. The natural dissolved influxes of Pb, Sc, and Y reach a similar order of magnitude. Normalisation with Sc and Y is applied to quantify contributions from anthropogenic Pb. Based on continuous sampling of 1 cm sample slices, variations in the influx of Roman Pb could be reconstructed at a time resolution of c. 5 a. Combined geochemical and Pb isotope mass balance is used to characterise the isotopic composition of anthropogenic Pb. Distinctly enhanced influx of anthropogenic Pb occurs in the 1st and 2nd century AD and shows high variability on decadal scale. This is in contrast to central European Pb records, which document a gradual increase and decrease in ancient atmospheric pollution by Roman Pb. The reconstructed high variability in the influx of Roman Pb in An Loch Mór documents variations in the wind regime of western Europe, temporarily favouring the transport of atmospheric Pb to western Ireland.  相似文献   

20.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号