首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
航空电磁系统校准是开展实际测量工作的基础,校准情况直接影响数据处理和解释.传统校准方法通常假设在自由空间中进行,忽略导电大地耦合影响.然而,实际工作中很难找到绝对高阻的校准场地,导电大地对系统校准和观测数据的影响无法忽视.本文以频率域航空电磁系统为例,对导电大地上航电系统校准技术和校准误差改正方法进行研究.我们首先推导了层状导电大地上水平共面和直立共轴线圈系统的校准公式,结果表明导电大地对航电系统校准尤其是水平共面装置的高频信号影响很大.针对校准过程中大地电导率已知的情况,本文采用非线性方程求解技术一次性确定校准线圈位置和Q值;在没有任何辅助信息情况下,也可直接利用实测数据计算校正因子进行迭代求解.测试结果表明该方法快速、准确、有效.考虑到系统相位和增益调整直接影响观测数据,本文提出了航空电磁数据校准误差的改正算法.实测数据误差改正结果表明,导电大地对高频信号影响严重,校准误差改正后的航空电磁数据与实际地质资料更好吻合.  相似文献   

2.
Comprehensive studies of water resources systems require integration of modeling tools and data associated with individual processes. An object-oriented approach is presented here that associates ground water models based upon the analytic element method (AEM) with geographic information system (GIS) geodatabase features using an AEM Model Interface. Each aquifer object contains a prescribed geometry, a mathematical representation in the AEM, and GIS hydrogeologic data. The synergistic understanding inherent in such an approach is illustrated by a study linking local AEM model predictions of water elevation with ground water geodatabase objects. This AEM Model Interface provides a key component in establishing a common object-oriented geodatabase modeling approach linking ground water to a variety of natural and social processes.  相似文献   

3.
The analytic element method (AEM) has been applied to a 15,000-km2 area of the Paleozoic carbonate rock terrain of Nevada. The focus is the Muddy River springs area, which receives 1.44 m3/s (51 ft3/s) of regionally derived ground water, and forms the Muddy River. The study was undertaken early in 2000 to support the development of a cooling water supply for a gas-fired generation facility 20 km south of the Muddy River springs. The primary objectives of the AEM modeling were to establish a better understanding of regional fluxes and boundary conditions and to provide a framework for examination of more local transient effects using MODFLOW. Geochemical evidence available in 2000 suggested two separate flow fields, one in the north discharging at the springs, and a southern area of small hydraulic gradients. To be conservative, however, hydraulic continuity between the two areas was maintained in the 2000 AEM model. Using new monitoring well data collected in the south, and analyses confirming that seasonal pumping effects in the north are not propagated to the south, a later AEM model that included a barrier calibrated with relative ease. The analytic element model was well suited for simulating an area larger than the immediate area of interest, was easy to modify as more information became available, and facilitated the stepwise development of multiple conceptual models of the site.  相似文献   

4.
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell’s equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.  相似文献   

5.
2.5维起伏地表条件下时间域航空电磁正演模拟   总被引:7,自引:5,他引:2       下载免费PDF全文
时间域航空电磁作为一种高效地球物理勘探技术特别适合我国地形复杂地区(沙漠、高山、湖泊、沼泽等)资源勘查.然而,这些地区地形起伏较大,对航空电磁响应有严重影响,忽略地形影响会给航空电磁数据解释造成很大误差.到目前为止人们对航空电磁地形效应特征研究十分有限.本文提出了基于非结构化网格的有限元法模拟带地形时间域航空电磁系统响应.该方法与基于结构化网格的有限差分相比能更好地模拟地形.首先通过傅里叶变换将2.5维问题转化成二维问题,利用伽辽金方法对二维问题进行离散.通过使用MUMPS求解器,得到波数域电磁响应.利用反傅里叶变换将波数域电磁响应变换到空间域,并利用正弦变换将其变换到时间域,得到2.5维时间域航空电磁响应.通过将本文的计算结果与半空间模型解析解及其他已发表的结果进行对比,检验了本文算法的精度.最后,我们系统分析了山峰和山谷地形对航空响应的影响特征.本文研究结果对航空电磁地形效应的识别和校正具有指导意义.  相似文献   

6.
为实现地震自动速报信息的汇集和共享,国家测震台网开发了地震自动速报信息综合管理平台,该系统利用简易信息聚合(RSS)技术实现了全球地震自动速报信息的汇集,速报过程、地震参数综合展示及地震速报信息的共享与发布。可利用这些数据开展进一步分析处理,从而提高地震自动速报的准确性和时效性。  相似文献   

7.
Analytic element ground water modeling as a research program (1980 to 2006)   总被引:2,自引:0,他引:2  
Kraemer SR 《Ground water》2007,45(4):402-408
Scientists and engineers who use the analytic element method (AEM) for solving problems of regional ground water flow may be considered a community, and this community can be studied from the perspective of history and philosophy of science. Applying the methods of the Hungarian philosopher of science Imre Lakatos (1922 to 1974), the AEM "research program" is distinguished by its hard core (theoretical basis), protective belt (auxiliary assumptions), and heuristic (problem solving machinery). AEM has emerged relatively recently in the scientific literature and has a relatively modest number of developers and practitioners compared to the more established finite-element and finite-difference methods. Nonetheless, there is evidence to support the assertion that the AEM research program remains in a progressive phase. The evidence includes an expanding publication record, a growing research strand following Professor Otto Strack's book Groundwater Mechanics (1989), the continued placement of AEM researchers in academia, and the further development of innovative analytical solutions and computational solvers/models.  相似文献   

8.
In the simulation‐optimization approach, a coupled optimization and groundwater flow/transport model is used to solve groundwater management problems. The efficiency of the numerical method, which is used to simulate the groundwater flow, is one the major reason to obtain the best solution for a management problem. This study was carried out to examine the advantages of the analytic element method (AEM) in the simulation‐optimization approach, for the solution of groundwater management problems. For this study, the AEM and finite difference method (FDM) based flow models were developed and coupled with the particle swarm optimization (PSO)‐based optimization model. Furthermore, the AEM‐PSO and FDM‐PSO models developed were applied in hypothetical as well as real field conditions to address groundwater management problems and the results were compared. For the real field situation, the models developed were applied to the Dore River basin in France to minimize the installation and operational cost of new pumping wells taking the location and discharge of the pumping wells as decision variables. The constraints of the problem were identified with the help of stakeholders and water authority officials. The AEM flow model was developed to facilitate the management model particularly when at each iteration, the optimization model calls for a simulation model to calculate the values of groundwater heads. The results show that, at some points, the AEM‐PSO model is efficient in identifying the optimal location of wells and consequently results in optimal costs, sometimes difficult when using the FDM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The Next-Generation Liquefaction (NGL) project was launched to (1) substantially improve the quality, transparency, and accessibility of case history data related to ground failure; (2) provide a coordinated framework for supporting studies to augment case history data for conditions important for applications but poorly represented in empirical databases; and (3) provide an open, collaborative process for model development in which developer teams have access to common resources and share ideas and results during model development. Work to date has focused on compiling high-value case histories, developing a database template, and planning for needed supporting studies. We describe the project motivation, explain and illustrate how data resources will be compiled and organized, summarize preliminary results from ongoing data collection, describe needed supporting studies, and review project status and next steps.  相似文献   

10.
With the increasing number of channels in AEM systems, computer data handling is becoming a necessity. The experience gained in processing of seismic and aeromagnetic data cannot be applied directly to low-frequency (100-5000 Hz) AEM methods. A novel scheme has been designed for AEM data processing and tested on 2900 km (1800 miles) of Input surveys. In the first step, the digital flight tapes are merged with digitized flight path recovery to form the primary data set. The validity of the raw data is controlled by the computer, but the interpreter has an option of checking them in perspective plots of channel amplitudes. The primary data set is reduced by processors which determine the location and type of anomalies and discard noise. Unlike the widely used deconvolution, the sequential processor determines first the anomaly location and then estimates parameters, such as peak amplitude, base width, and excess area, which are used as acceptance criteria. Interpretation parameters, such as σt, conductor depth, and dip are estimated by comparison with quantitative models. The recorded channel amplitudes are plotted together with the selected interpretation parameters in a profile form. The secondary data set which includes only the interpretation parameters for selected anomalies is graphically displayed as a schematic map of apparent σt. Elongated features are traced by a fan strike recognition routine and a trend map is automatically compiled and plotted. Disk storage is essential for second pass processing during which parts of the primary data set are searched for undiscovered anomalies matching the analyzed trend. The suggested procedure for AEM data processing is demonstrated on an Input MK V survey, Southern Indian Lake, Manitoba.  相似文献   

11.
Parameter-estimation methods, including an exhaustive-search method and PEST (Parameter ESTimation) software, were applied to recovery-test data and slug-test data to obtain best estimates of transmissivity (T) by minimizing the sums of residuals. Each residual represents the difference between the field-measured water-level value and the value calculated by the appropriate non-linear equation. The exhaustive-search method in both cases involves computing the sums of residuals for an array of transmissivity and storativity values selected by the user for testing. Two new Fortran programs are presented that employ the exhaustive-search method. They utilize Picking's method for analyzing recovery-test data and the analytical equation for analyzing slug-test data derived by Cooper, Bredehoeft, and Papadopulos. Picking's method involves application of the Papadopulos and Cooper's equation for drawdown in finite-diameter wells. Utilizing field data reported in the literature, the estimated transmissivity values from the exhaustive-search methods were compared to the literature values obtained by type-curve matching techniques. The exhaustive-search values corresponded closely to the curve-matching values. Estimates for T were also obtained from recovery-test and slug-test data from two sites in southeastern Pennsylvania. For these sites, the PEST program was also applied to the data to evaluate the accuracy of the exhaustive-search methods. The results from the two methods were generally in good agreement. The two new Fortran programs are practical tools for the hydrogeologist, as they require less time compared to type-curve matching and the PEST method, and they yield accurate estimates of transmissivity.  相似文献   

12.
关于计算机在数字化地震前兆观测系统中的应用,首要的问题是实时地收集前兆数据。本文介绍的数字化前兆实时采集程序是在国产DJS—131计算机的支持下,在实时操作系统XRTOS的控制下,实时响应中断,实时采数;对采得的数据进行多种功能的判别、处理,并按一定格式编排,写入数字磁带,供进一步分析处理用。该程序主要应用于电信传输地震台网的前兆观测系统中。程序的设计思想及其处理方法可推广到任何其它的实时采集数据的系统中。  相似文献   

13.
航空电磁法作为一种地形复杂地区资源探测的有效方法,近年来得到了广泛的应用.然而,由于系统所处的动态环境,噪声干扰严重.为了改善航空电磁数据质量,提高地下电性反演的准确性,需要研发相关去噪技术.传统航电去噪大多针对特定噪声或单一测线上的信号进行处理,难以兼顾相邻测线之间观测信号的相关性.本文采用曲波变换进行二维航空电磁数据去噪.由于曲波变换具有多尺度和多方向性特征,可以在对噪声精细分析的基础上进行有效去除,同时还保证了整个测区内信号的相关性.进而,我们提出Sigmoid阈值函数对传统阈值函数进行改进,以进一步改善去噪效果.为了验证曲波变换方法对航空电磁数据去噪的有效性,将曲波变换和传统去噪方法分别应用于理论模型和实测数据进行对比.试验证明本文曲波变换用于航空电磁数据去噪具有明显的优越性.  相似文献   

14.
井间层析成像的最大熵方法   总被引:4,自引:0,他引:4       下载免费PDF全文
殷军  冯锐 《地球物理学报》1992,35(2):234-241,T002
本文研究最大熵图像重建用于地球物理学中井间观测问题,着重研究了剑桥算法.对算法中拉格朗日乘子的确定给出了新方法;解决了算法的收敛条件和收敛范围;提出了减少算法计算量和内存量的方法,并编制了实用程序MECT.通过数值模型的研究,最后重建出了某矿区的剖图,与BPT和ART方法的结果进行了比较.证明最大熵图像重建法的优越性在于能有效地抑制噪声,分辨率高,边界影响程度小.若改善观测条件,将提高最大熵成像法的分辨率.  相似文献   

15.
16.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

17.
The coupling of hydraulic and poroelastic processes is critical in predicting processes involving the deformation of the geologic medium in response to fluid extraction or injection. Numerical models that consider the coupling of hydraulic and poroelastic processes require the knowledge of relevant parameters for both aquifer and aquitard units. In this study, we jointly estimated hydraulic and poroelastic parameters from pumping test data exhibiting “reverse water level fluctuations,” known as the Noordbergum effect, in aquitards adjacent to a pumped aquifer. The joint estimation was performed by coupling BIOT2, a finite element, two‐dimensional, axisymmetric, groundwater model that considers poroelastic effects with the parameter estimation code PEST. We first tested our approach using a synthetic data set with known parameters. Results of the synthetic case showed that for a simple layered system, it was possible to reproduce accurately both the hydraulic and poroelastic properties for each layer. We next applied the approach to pumping test data collected at the North Campus Research Site (NCRS) on the University of Waterloo (UW) campus. Based on the detailed knowledge of stratigraphy, a five‐layer system was modeled. Parameter estimation was performed by: (1) matching drawdown data individually from each observation port and (2) matching drawdown data from all ports at a single well simultaneously. The estimated hydraulic parameters were compared to those obtained by other means at the site yielding good agreement. However, the estimated shear modulus was higher than the static shear modulus, but was within the range of dynamic shear modulus reported in the literature, potentially suggesting a loading rate effect.  相似文献   

18.
Airborne electromagnetic (AEM) methods are increasingly being used as tools of geological mapping, groundwater exploration and prospecting for coal and lignite. In such applications, quantitative interpretation is commonly based on the layered-earth model. A new approach, a damped least-squares inversion with singular value decomposition, is proposed for interpretation of time-domain, towed-bird AEM data. Studies using theoretical and field AEM data indicate that inversion techniques are dependable and provide fast converging solutions. An analysis has been made of the accuracy of model parameter determination, which depends on resistivity and thickness distribution. In the common case of conductive overburden, upper-layer resistivity and thickness are usually well determined, although situations exist where their separation becomes difficult. In the case of a resistive layer overlying a conductive basement, the layer thickness is the best-determined parameter. In both cases, estimates of basement resistivity are the least reliable. Field data obtained with the Chinese-made M-l AEM system in Dongling, Anhui Province, China, were processed using the described inversion algorithm. The survey area comprised fluvial Cenozoic clays and weathered Mesozoic sediments. Inversion of AEM data resulted in accurate depth-to-bedrock sections and realistic estimates of the resistivities of overburden and bedrock which agree with the results of drilling and resistivity sounding.  相似文献   

19.
Artificial neural networks were used to implement an automatic inversion of frequency‐domain airborne electromagnetic (AEM) data that do not require a priori information about the survey area. Two classes of model, i.e. homogeneous half‐space models and horizontally layered half‐space models with two layers, are used in this 1D inversion, and for each data point the selection of the class of 1D model is performed prior to the inversion, also using an artificial neural network. The proposed inversion method was tested in a survey area situated in Austria, northwest of Vienna in the Bohemian Massif. The results of the inversion were compared with the geological setting, logging results, and seismic and gravimetric measurements. This comparison shows a good correlation between the AEM models and the known geological and geophysical data.  相似文献   

20.
Jing Zhang  Mark Ross 《水文研究》2012,26(24):3770-3778
Clay‐settling areas (CSAs) are one of the most conspicuous and development‐limiting landforms remaining after phosphate mining. Many questions are asked by the mining and regulatory communities with regard to the correct modelling (predictive) methods and assumptions that should be used to yield viable hydrologic post‐reclamation landforms within CSAs. Questions as to the correct methodology to use in modelling/predicting long‐term CSA hydrologic performance have historically been difficult to answer because the data and analysis to support popular hypotheses did not exist. The goal of this paper was to substantially improve the data, analysis and predictive methodology necessary to return CSAs to viable hydrologic units, and moreover, to develop better understanding of the hydrology of CSAs and their ability to support wetlands. The study site is located at the Fort Meade Mine in Polk County, Florida. In this paper, continuous model simulation and calibration of study site were conducted for the hydrologic model, Hydrological Simulation Program – FORTRAN, which was generally selected on the basis of its popularity in predicting the hydrologic behaviour of CSAs. The objective of this study was to simulate streamflow discharges and stage to estimate runoff response from these areas on the basis of the observed rainfall within the CSA. A set of global hydrologic parameters was selected and tested during the calibration by the parameter estimation software PEST. A comparison of the simulated and observed flow data indicates that the model calibration adequately reproduces the hydrologic response of the CSAs. The estimated parameters can be used as references for future application of the model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号