首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》1998,13(4):451-462
Water, suspended matter, and sediment samples were taken from 8 locations along the Yangtze River in 1992. The concentration and speciation (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and residual forms) of rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) were determined by instrumental neutron activation analysis (INAA).The contents of the soluble fraction of REEs in the river are low, and REEs mainly reside in particulate form. In the particles, the chondrite-normalized distribution patterns show significant LREE enrichment and Eu-depletion. While normalized to shales, both sediments and suspended matter samples show relative LREE enrichment and HREE depletion. REEs are relatively enriched in fine-grained fractions of the sediments.The speciation characteristics of REEs in the sediments and suspended matter are very similar. The amount of the five forms follows the order: residual>>bound to organic matter∼bound to Fe–Mn oxides>bound to carbonates>>exchangeable. About 65 to 85% of REEs in the particles exist in the residual form, and the exchangeable form is very low. High proportions of residual REEs reveal that REEs in sediments and suspended matter are controlled by their abundances in the earth's crust. Carbonate, Fe–Mn oxide and organic fractions of REEs in sediments account for 2.4–6.9%, 5.2–11.1%, and 7.3–14.0% of the total contents respectively. They are similar to those in the suspended matter. This shows that carbonates, Fe–Mn oxides and organic matter play important roles during the particle-water interaction processes. By normalization to shales, the 3 forms of REEs follow convex shapes according to atomic number with middle REE (Sm, Eu, and Tb) enrichment, while light REE and heavy REE are depleted.  相似文献   

2.
Sediment samples were collected from streambeds in an undisturbed watershed in eastern Quebec (Gaspé Peninsula). Two sampling sites were located on a stream draining an area of known mineralization (Cu, Pb, Zn) and two on a control stream. The sediment samples were separated into 8 distinct size classes in the 850 μm to <1 μm size range by wet sieving, gravity sedimentation or centrifugation. Each sediment subsample was then subjected to a sequential extraction procedure designed to partition the particulate heavy metals into five fractions: (1) exchangeable; (2) specifically adsorbed or bound to carbonates; (3) bound to Fe-Mn oxides; (4) bound to organic matter; (5) residual. The following metals were analyzed in each extract: Cu, Pb, Zn; Fe, Mn.Comparison of samples from the mineralized area with control samples revealed the expected increase in total concentrations for Cu, Pb and Zn. Non-detrital metals were mainly associated with Fe oxides (specifically adsorbed; occluded) and with organic matter or resistant sulfides. For a given sample, variation of trace metal levels in fractions 2 and 3 with grain size reflected changes in the available quantities of the inorganic scavenging phase (FeOx/MnOx); normalization with respect to Fe and Mn content in fraction 3 greatly reduced the apparent dependency on grain size.The results of this study suggest that a single reducing extraction (NH2OH.HCl) could be used advantageously to detect anomalies in routine geochemical surveys. A second leaching step with acidified H2O2 could also be included, as the trace metal concentrations in fraction 4, normalized with respect to organic carbon content, also showed high {anomaly/background} ratios.  相似文献   

3.
The distributions of Fe, Mn, Zn, Cu, Ni, Cd and Co have been determined in a section across the Scotian Shelf into the Atlantic Slope water. Significant differences in concentration exist for most of the trace metals between the four water masses in the section. Depletions of trace metal concentration in the highly productive Atlantic Slope water relative to the underlying Central Atlantic water are thought to be due to biological activity.The distributions of Fe and Mn are strongly related to the distribution of suspended particulate matter. The concentrations of Fe and Mn, extracted from the suspended matter on the Scotian Shelf, are considerably higher than those in the non-detrital fraction of the underlying sediments. This suggests that post-depositional changes cause the loss of both elements from the non-detrital fraction of the particles. Whereas Mn shows major nearshore increases in concentration related to continental runoff, nearshore Fe concentrations are largely controlled by particulate matter distribution. Continental runoff does not appear to have much influence upon the distributions of the other trace metals.  相似文献   

4.
Solid materials such as suspended particulate matter (SPM), deposited sediment (DS) and natural surface coatings (NSC, composed of biofilms and associated minerals) are important sinks and potential sources of pollutants in natural aquatic environments. Although these materials can exist in the same water body, few studies have been conducted to compare their ability to adsorb trace metals. In this study, the adsorption of Pb, Cu and Cd by these solids, collected from an urban lake, was investigated. In addition, the metal adsorption properties of the main components of these solids, namely Mn and Fe oxides and organics, were also investigated using the method of selective extraction followed by metal adsorption. The solids that co-existed in water showed similarities and differences in their compositions. For each metal, adsorption to the solids occurred in the same order: NSC > SPM > DS. For Pb and Cd, Fe and Mn oxides and organics contributed to the adsorption by NSC and SPM, and the adsorption by DS was dominated by Fe oxides. For Cu, the organics were the main adsorptive phase. The specific adsorption capability of these components decreases in the following order: Mn oxides > Fe oxides > organics. Overall, the results presented herein indicate that different solids and their components played important roles in the adsorption of trace metals.  相似文献   

5.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

6.
《Applied Geochemistry》2002,17(9):1171-1181
Sediment cores were collected from 20 lakes from the Muskoka region of Ontario, Canada, to study vertical changes in trace metal concentrations with depth and the distribution of metals amongst humic material, amorphous and crystalline Fe and Mn oxides, insoluble organics/sulphides, and silicates. Based on their total concentrations, trace elements displayed different degrees of affinity for the organic fraction (represented by organic C) and the mineral fraction (represented by Al). Certain elements (Hg, As, Sb, Pb, Cd, and Zn) displayed a positive correlation with organic C, a negative correlation with Al, and enrichment in surface sediments (with enrichment factors ranging from 2 to 24). Detailed speciation studies revealed that these elements were associated mainly with humic material and to a lesser extent with oxides in surface sediments. Other elements (Al, Cr, Co, Fe, and Mn) displayed a negative correlation with organic C, a positive correlation with Al, and no consistent enrichment in their total concentration at the surface. The speciation study revealed that metals of the latter group were mainly associated with the silicate fraction in both surface and deep sediments. This study shows that relative affinities for organic and mineral fractions play an important role in the distribution of trace metals during burial and diagenesis, and hence in the shape of their vertical profiles.  相似文献   

7.
We used elemental carbon, nitrogen, hydrogen and sulfur as well as ratios of hydrogen and nitrogen with total organic carbon for investigation of source and conditions of organic matter in alluvial Danube sediments. We also determined the pseudo total concentrations of metals presented as a sum of extracted concentration after five sequential extraction steps. The pseudo total metal concentrations were found to be (mg kg−1) for Mn, 666; Fe, 25,852; Mg, 16,193; K, 2,063; Ni, 32.4; Zn, 72.2; Pb, 15.0; Cu, 26.0 and for Cr, 15.9. Correlation analysis and two multivariate analysis methods (principal component and cluster analysis) were helpful in determining the associations between the pseudo total extracted fractions of metals and with elemental carbon, hydrogen, nitrogen, sulfur, total inorganic and organic carbon. These correlations will help us to identify substrates of trace metals in different oxic/anoxic conditions. The correlation results of the trace metals and Fe, K, Mg and Mn suggest their adsorption, mainly onto Fe and Mn (hydro)oxides and K alumosilicates, whereas correlations of metals with sulfur indicate that they were precipitated as Fe-sulfides.  相似文献   

8.
The USGS reference sample marine mud MAG-1 has been subjected to a sequential extraction procedure designed to partition the constituent trace metals into five fractions: I-exchangeable; II- bound to carbonates; III-bound to Fe-Mn oxides; IV- bound to organic matter; V- residual. The analytical approach involved successive chemical extractions and the subsequent determination of trace metal concentrations (Co, Cu, Ni, Pb, Zn; Fe, Mn) in the leachates by atomic absorption spectrophotometry. The chemical speciation results obtained on four replicate sub-samples demonstrate that the coefficients of variation for metal concentrations in the individual fractions are generally better than + 10%. Comparison with published values for total trace metal concentrations in the MAG-1 sample suggests that the overall accuracy of the chemical extraction procedure is satisfactory.  相似文献   

9.
Organic-rich sediment samples collected from a transect within, and below, the Oman Margin oxygen minimum zone (OMZ) were analysed using a sequential leaching technique to characterise the diagenetic behaviour and speciation of Mn and Fe in operationally defined sediment host fractions. Trace metals showed distinct diagenetic behaviour in the two contrasting environments that were sampled. The absence of non-detrital Mn in the cores below the OMZ site is attributed to the lack of easily reducible oxides in surficial sediments and to the reduction and export of any moderately reducible aged oxides. The reactive form of solid phase Mn showed a classic feature of enrichment in the upper layer of the sediments at the abyssal site, reflecting the presence of an oxidising sedimentary layer which acts as a Mn trap during its recycling. The diagenetic Mn enrichment was inferred from typical downcore colour changes and an upward-increasing Mn content in the upper core sections. An easily reducible Fe oxide layer was observed in the abyssal sediments at an identical depth to the Mn enrichment suggesting that Fe associated with Mn oxides also has undergone sub-oxic diagenesis. However, the association of Fe with organic matter did not indicate diagenetic modification; i.e., the binding strength of the metal with organic materials appears to be sufficiently strong to preserve the trace metal. The speciation signature of non-detrital Fe differed from that of Mn. The association of Fe with organic matter suggests that this metal does not undergo diagenetic modification and is preserved in abyssal sediments. The contrasting behaviour of Mn and Fe observed between cores within the OMZ were particularly interesting. Another interesting observation was that, for cores below the OMZ, the iron oxides were associated with the Mn-oxide peak, rather than deeper in the sediments as observed by earlier studies in the Atlantic [Froelich et al. (1979). Geochim. et Cosmochim Acta 43, 1075–1090].This revised version was published online in May 2005 with corrections to the article title.  相似文献   

10.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

11.
Vertical profiles from the water column, including the maximum turbidity zone (MTZ) to the consolidated sediment were sampled in September 2000 in the freshwater reaches of the Gironde Estuary during a complete neap tide-spring tide cycle. The vertical distributions of dissolved major redox parameters and metals (Mn, Fe, Cd, Cu, V, Co, Ni, Mo, and U) were determined. Reactive particulate metal fractions were also determined from selective leaching. The studied system is characterized by density layers functioning at different time-scales, consisting of two mobile layers, i.e., the liquid (LM) and the soft mud (SM), overlying consolidated sediments (CS). This results in a three-zone diagenetic regime where (1) O2 dynamics are fast enough to show depletion in the rapidly mixed LM sequence (tidal time-scale), (2) denitrification occurs on the weekly time-scale mixing SM sequence, and (3) the Mn, Fe, and sulfate cycling occurs in the CS layer (annual time-scale). The studied trace metals show differential behavior during early diagenesis: (1) Cd, Cu, and V are released into pore water preferentially from organic matter in the SM, (2) Co, Ni, and U are released in the CS from Mn and Fe oxides during reductive dissolution, and (3) Mo from both processes. Transient conditions (i.e., oscillations of redox fronts and reoxidation processes), due to the dynamics of the mobile layers, strongly influence the trace metal distributions as inducing resolubilization (Cd, Cu, and Mo). In the CS, authigenic metal phases accumulate, either by direct precipitation with sulfides (Cu, Cd) or co-precipitation with Fe-sulfides (Mo). Microbially mediated reduction of Fe oxides is proposed to control U removal from pore water by reduction of U(VI) to U(IV) at depth. However, a significant fraction of the trace metals is trapped in the sediment in exchangeable forms, and therefore is susceptible to be mobilized due to resuspension of estuarine sediment during strong river flood periods and/or dredging activities.  相似文献   

12.
Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.  相似文献   

13.
Water samples from eight major Texas rivers were collected at different times during 1997–1998 to determine the dissolved and particulate trace metal concentrations, expected to show differences in climate patterns, river discharge and other hydrochemical conditions, and human activities along the different rivers. Specifically, two eastern Texas rivers (Sabine, Neches) lie in a region with high vegetation, flat topography, and high rainfall rates, while four Central Texas rivers (Trinity, Brazos, Colorado, and San Antonio) flow through large population centers. Relatively high dissolved organic carbon (DOC) concentrations in the eastern Texas rivers and lower pH led to higher Fe and Mn concentrations in river waters. The rivers that flow through large population centers showed elevated trace metal (e.g., Cd, Pb, Zn) concentrations partly due to anthropogenically produced organic ligands such as ethylenediaminetetraacetic acid (EDTA) present in these rivers. Trace metal levels were reduced below dams/reservoirs along several Texas rivers. Statistical analysis revealed four major factors (suspended particulate matter [SPM], EDTA, pH, and DOC) that can explain most of the observed variability of trace metal concentrations in these rivers. SPM concentrations directly controlled particulate metal contents. Variation in pH correlated with changes of dissolved Co, Fe, Mn, and Ni, and particulate Mn concentrations, while DOC concentrations were significantly related to dissolved Fe concentrations. Most importantly, it was found that, more than pH, EDTA concentrations exerted a major control on dissolved concentrations of Cd and Zn, and, to a lesser extent, Cu, Ni, and Pb.  相似文献   

14.
Chilka lake, the largest coastal lagoon of Asia is one of the most dynamic ecosystems along the Indian coast. Historically the lagoon has undergone a considerable reduction in surface area due, in part, to input from natural processes but mostly due to human activities. The purpose of this investigation is to document the heavy metals' affinity for specific geochemical phases in the recently deposited sediments in the lagoon. Thirty-three samples were collected and analyzed for different geochemical phases of Fe, Mn, Cu, Cr, Ni, Pb, and Zn utilizing a sequential extraction scheme. In the nonlithogenous fraction, the exchangeable fraction was not geochemically significant, having <2% of the total metal concentration for all the elements. However, the carbonate fraction contained the following percentages of the total concentration: <1% Fe, 13% Mn, 6% Cu, 4% Cr, 8% Ni, 13% Pb, and 12% Zn, suggesting the detrital origin of the sediments. Reducible and organic matter-bound fractions were the significant phases in the nonlithogenous fraction, containing 9% Fe, 16% Mn, 15% Cu, 16% Cr, 16% Ni, 14% Pb, and 14% Zn in the former and 4% Fe, 3% Mn, 17% Cu, 3% Cr, 14% Ni, 15% Pb, and 14% Zn in the latter. The phenomenon has been attributed to the scavenging affinity of Fe-Mn oxides and affinity for sorption into organic matter of the lagoon sediments. The lithogenous, residual fraction generally considered as a guide for natural background values was determined to contain 87% Fe, 67% Mn, 61% Cu, 77% Cr, 61.3% Ni, 56% Pb, and 60% Zn of the total concentrations.  相似文献   

15.
Surficial sediment samples were collected at 47 stations in Little Traverse Bay, Lake Michigan, to determine the geochemical associations between certain rare earth elements (REE's) and trace metals. Each sample was analyzed for carbonate carbon, organic carbon, grain size, and the elements Al, Ca, Ce, Co, Cr, Eu, Fe, Hf, La, and Mn. Two distinct Ce subpopulatins were identified by graphical analysis, and an R-mode factor analysis was applied to data from the “enriched” Ce subpopulation (18 samples). Results show that the REE's and trace metals are primarily enriched in the authigenic phase of these sediments. Partial correlation analyses indicate that the REE's are primarily associated with hydrous Fe oxides relative to organic matter in this phase. The ratio of Ce/La concentrations increased markedly from the bay margins to the central trough of the bay, indicating that Ce, similar to Fe, exhibits a variable oxidation state in the authigenic phase of nearshore fine-grained sediments. The results of the present study suggest that the REE's and trace metals behave coherently in the authigenic phase of recent lacustrine sediments, and the REE's may be useful as geochemical tracers to differentiate between trace metal enrichments in surface sediments as a result of diagenesis and pollution loadings.  相似文献   

16.
Sequential core sediments from northwestern Taihu Lake in China were analyzed for grain size, organic carbon and heavy metal content. The sediments are composed of organic-poor clayey-fine silts. The chemical speciations of Cu, Fe, Mn, Ni, Pb, and Zn were also analyzed using the BCR sequential extraction procedure. Cu, Fe, Ni, and Zn are mainly associated with the residue fraction; Mn is concentrated mainly in exchangeable/carbonate fraction and residue fraction; and Pb mainly in Fe/Mn oxide fraction and organic/sulfide fraction. The exchangeable/carbonate fractions of Cu, Fe, Ni, Zn and Pb are lower. The fractions of Ni, Pb and Zn bound to the Fe/Mn oxide have significant correlations with reducible Mn; the organic/sulfide fractions of Cu, Mn, Ni, Pb, and Zn have significant correlations with TOC. The extractable fractions of Cu, Mn, Ni, Pb, and Zn are high at the top 4 cm of the core sediments as compared to those in the deeper layers, showing the anthropogenic input of heavy metals is due to rapid industrial development. The heavy metal pollution history of the sediments has been recorded since the late 1970s, determined by the result of ^137Cs dating.  相似文献   

17.
Several samples of groundwater and soils and plants have been collected from Sohar (Batina region, NE Oman), which is affected by various activities such as mining, agriculture, and sewage. To characterize quality of groundwater, As and Cu concentrations have been investigated in waters collected from different wells. Comparison of data with local and international standard values revealed that groundwater in Sohar region is characterized by lower concentrations in Cu and As compared with standards. In soils collected from the same area, concentrations of heavy metals have been measured in different fractions in order to investigate the mobility of such elements and risk of vulnerability in this area. A sequential extraction procedure has been applied to surface sediments to determine the partitioning of Zn, Cu, Co, Mn, Fe, Pb, Cr, Cd and Ni among (1) exchangeable and acid-soluble phases, (2) Fe–Mn oxides, (3) organic matter and sulphides and (4) resistant phases. The results showed that the mobile fraction in the sewage area accounts only for 10 % of the total concentration in sediments while in the Cu mining area, the contribution of the mobile fraction may exceed 10 %, especially for Pb, Mn, Cd, Cu and Co. Investigation of concentrations in As and Cu in plants collected from mining and sewage areas revealed an important accumulation of these elements in leaves and may explain enrichment of As in shallow groundwater relative to deep groundwater. This investigation also showed that Cu is more available in sewage area than in mining zone, as opposed to As.  相似文献   

18.
Particulate Fe and Mn may be important trace metal scavengers in the water column as well as being probable indicators of biologically mediated redox processes. A study has been made of suspended particulate composition in the Santa Barbara Basin, a shallow near-shore basin off southern California with sub-oxic conditions below sill depth. Observations have revealed several interesting phenomena relating to the geochemistry of Fe and Mn. Most striking is a profound enrichment of particulate Fe in samples from the bottom two hundred meters. These particulates have a constant Fe/P mole ratio of about three and may originate at the sediment-water interface or may be transported to the basin from local marshes. For particulate Mn, enrichments are observed both in the sub-sill waters and near the base of the euphotic zone. A consideration of particle removal rates suggests that the sub-photic zone enrichment has a biogenic origin. In the sub-sill waters, enrichment in Mn is apparently due to the precipitation of dissolved Mn diffusing from the anoxic basin sediments. A simple mass balance suggests that most of the Mn lost from the sediments is transported from the Santa Barbara Basin in dissolved form.  相似文献   

19.
黄河包头段不同粒级沉积物中重金属形态分布特征   总被引:3,自引:0,他引:3  
以黄河包头段为研究对象,探讨了该河段不同粒级沉积物中重金属的形态分布特征,并估算了各粒级沉积物对各形态重金属的贡献率。结果表明,铁锰氧化物结合态是黄河干流各粒级沉积物中Cu、Pb和Zn非稳定态的主导形态;总体上,黄河干支流沉积物中3种重金属各形态含量均随粒级增大而减小,表现明显的粒度效应;重金属形态分布的粒度效应是沉积...  相似文献   

20.
Partitioning of heavy metals in surface Black Sea sediments   总被引:1,自引:0,他引:1  
Bulk heavy metal (Fe, Mn, Co, Cr, Ni, Cu, Zn and Pb) distributions and their chemical partitioning, together with TOC and carbonate data, were studied in oxic to anoxic surface sediments (0–2 cm) obtained at 18 stations throughout the Black Sea. TOC and carbonate contents, and available hydrographic data, indicate biogenic organic matter produced in shallower waters is transported and buried in the deeper waters of the Black Sea. Bulk metal concentrations measured in the sediments can be related to their geochemical cycles and the geology of the surrounding Black Sea region. Somewhat high Cr and Ni contents in the sediments are interpreted to reflect, in part, the weathering of basic-ultrabasic rocks on the Turkish mainland. Maximum carbonate-free levels of Mn (4347 ppm), Ni (355 ppm) and Co (64 ppm) obtained for sediment from the shallow-water station (102 m) probably result from redox cycling at the socalled ‘Mn pump zone’ where scavenging-precipitation processes of Mn prevail. Chemical partitioning of the heavy metals revealed that Cu, Cr and Fe seem to be significantly bound to the detrital phases whereas carbonate phases tend to hold considerable amounts of Mn and Pb. The sequential extraction procedures used in this study also show that the metals Fe, Co, Ni, Cu, Zn and Pb associated with the ‘oxidizable phases’ are in far greater concentrations than the occurrences of these metals with detrital and carbonate phases. These results are in good agreement with the recent studies on suspended matter and thermodynamic calculations which have revealed that organic compounds and sulfides are the major metal carriers in the anoxic Black Sea basin, whereas Fe-Mn oxyhydroxides can also be important phases of other metals, especially at oxic sites. This study shows that, if used with a suitable combination of the various sequential extraction techniques, metal partitioning can provide important information on the varying geological sources and modes of occurrence and distribution of heavy metals in sediments, as well as, on the physical and chemical conditions prevailing in an anoxic marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号