首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase diagrams of the systems Cu2S-PbS-Bi2S3 and Ag2S-PbS-Bi2S3 have been investigated in the present study. The paper is concerned with the complete solid solution between bismuthtite and aikinite above 300°C in the system Cu2S-PbS-Bi2S3. The synthetic phases CuBi3S5 and Cu3Bi5S9 have their solid solution ranges in the ternary system with 9 and 26 mole% PbS at maximum, respectively. A complete solid solution between PbS and AgBiS2 divides the phase diagram of the system Ag2S-PbS-Bi2S3 into two parts: Bi-rich and Ag-rich. All sulfosalt minerals and solid solutions, including pavonite ss, lillianite ss, heyovskyite and benjaminite are on the Bi-rich side. And divarant relations were found between pavonite ss -lillianite ss, benjaminite and bismuthtite as well as between lillianite ss -bismuthtite and galenobismutite. Synthetic experiments using LiCl-KCl flux technique show that when a minor amount of copper (less lwt.%) is added in, many of Ag-and Pb-bismuth sulfosalt minerals, for example, vikingite (Ag5Pb8Bi13S30), are synthesized successively, particularly at 400°C. So is heyrovskyite, which has a solid solution range with 3.7 mole% Cu2S at maximum in the system Cu2S-PbS-Bi2S3.  相似文献   

2.
The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9 at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after the reversible phase transition despite an anisotropic contraction of the unit cell and a volume decrease of 4.2%. The crystal structure of the high pressure phase, β-Pb6Bi2S9, is solved in Pna2 1 (a = 25.302(7) Å, b = 30.819(9) Å, c = 4.0640(13) Å, Z = 8) from synchrotron data at 5.06 GPa. This structure consists of two types of moduli with SnS/TlI-archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).  相似文献   

3.
Summary Pb–Bi–(Cu)-sulfosalts occur as minor minerals widely distributed in rocks of the Penninic unit (gneisses, schists, metavolcanics, etc.), Oberpinzgau, Salzburg. The sulfosalts have been investigated by ore microscopy, X-ray diffraction and electron microprobe analysis. The phases identified are: heyrovskyite, cosalite (Moaralm, Sedl, and Wiesbachrinne in the Habach Valley), lillianite (Moaralm, Sedl; Modereck near the Fuscher Valley), galenobismutite (Bärenbad in the Hollersbach Valley) and Bi-bearing galena. Heyrovskyite (Moaralm) has a composition close to Pb6Bi2S9, with Ag contents between 0.2 (Sedl) and 0.6 (Moaralm) wt.%. Lillianite has the composition Pb2.86–2.91 Bi2.08–2.17Ag0.04–0.08 S6, and cosalite, Pb1.81–2.04 Bi1.92–2.02 Ag0.02–0.06 Cu0.11–0.18S5. The average chemical composition of galenobismutite is Pb1.25Bi1.6Sb0.1Cu0.1Ag0.02Fe0.1S4. Needle-like inclusions of a joseite-type mineral, joseite-A (Bi,Pb)4.01 Te0.9S2.08, and irregular to needle-like grains of native bismuth usually occur along the elongation direction of the lath-like galenobismutite crystals.The occurrences can be divided into two types: 1) stratiform Pb–Bi sulfosalts which occur only in the quartzite intercalations of the Paleozoic Habach unit (Frasl, 1958), and 2) alpidic vein type Pb–Bi sulfosalts which occur in quartz veins intersecting gneisses and are considered to be the remobilization products of the first type. Temperature of formation for heyrovskyite in this region is estimated at between 400±25°C and 500°C. Most probably, the assemblage heyrovskyite-lillianite-galena (Moaralm) was formed at or below 473°C.
Pb–Bi–(Cu)-Sulfosalze in paläozoischen Gesteinen des Oberpinzgau, Salzburg, Österreich
Zusammenfassung Pb–Bi-Sulfosalze verschiedener Vorkommen des Oberpinzgau, Salzburg, wurden mittels Erzmikroskopie, röntgenographischer Methoden und Mikrosonde untersucht. Folgende Phasen wurden identifiziert: Heyrovskyit, Cosalit (Moaralm, Sedl und Wiesbachrinne; alle Habachtal), Lillianit (Moaralm, Sedl; Modereck nahe des Fuschertales), Galenobismutit (Bärenbad, Hollersbachtal) und Bi-hältiger Bleiglanz. Heyrovskyit (Moaralm) ist nahezu Pb6Bi2S9, mit Ag-Gehalten zwischen 0,2 (Sedl) und 0.6 (Moaralm) Gew.%, Lillianit Pb2,86–2,91Bi2,08–2,17Ag0,04–0,08S6, und Cosalit Pb1,81–2,04Bi1,92–2,02Ag0,02–0,06 Cu0,11–0,18S5. Galenobismutit ist Pb1,25Bi1,6Sb0,1Cu0,1Ag0,02Fe0,1S4. Nadelige Einschlüsse von Joseit-A, (Bi, Pb)4,01Te0,9S2,08, und unregelmäßige bis nadelige Körner von ged. Wismut treten entlang der Längsrichtung der Galenobismutit-Kristalle auf. Die Mineralisationen sind an stratiforme, sulfidreiche Quarzlagen (Typus 1, z. B. Bärenbad) oder an diskordante Quarzgänge (Typus 2; alle anderen Vorkommen) gebunden. Typus 1 tritt innerhalb der altpaläzozischen Habachserie (Frasl, 1958), Typus 2 in Randbereichen dieser zu den Gneismassen der Habachzunge (z. T. auch in letzteren) auf. Die dem Typus 2 zugerechneten Vererzungen werden als Remobilisationsprodukte der altpaläozoischen Mineralisationen (Typus 1) angesehen.Die Bildungstemperatur des Heyrovskyit dürfte im betrachteten Bereich zwischen 400±25°C und 500°C gelegen haben; eine Bildungstemperatur von 473°C oder wening darunter wird für die Assoziation Heyrovskyit-Lillianit-Bleiglanz in Anlehnung an experimentelle Untersuchungen vonSalanci undMoh (1969) angenommen.


With 4 Figures

This investigation forms part of a wider study Genetic types of gold deposits in the Alps.  相似文献   

4.
Phase relations in the ternary systems Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3 were studied using the silica vacuum technique. In the system Ag2S-Cu2S-Bi2S3 the phase relations are dominated by join-lines from galena to f.c.c. (Agx Cu2−xS) and b.c.c. (Cux Ag2−xS) at 500°C. With decreasing temperature, galena can coexist with all the phases on the Ag2S-Cu2S join. There are six solid solutions, and one new phase, i.e., “C” whose composition is Ag1.1 Cu4.8Bi5.8S12 in the system Ag2S-Cu2S-Bi2S3 at 500°C. The pavonite (AgBi3S5) contains 14 mole% Cu2S in solid solution, but only 3.0 mole% Ag2S in CuBi3S5 solid solution. The Cu3Bi5S9 ss and wittichenite (Cu3BiS3) ss can form join-lines with pavonite as and have the maximum contents of 9.0 and 18 mole% Ag2S. The most striking feature is the presence of bejaminite as a stable phase with a chemical formula of Ag2Bi4S7 on the Ag2S-Bi2S3 join. AgBiS2 of the PbS type occupies a fairly large field with a maximum of 23 mole% Cu2S.  相似文献   

5.
Phase relations and mineral assemblages in the Ag-Bi-Pb-S system   总被引:1,自引:0,他引:1  
Phase relations within the Ag-Bi-S, Bi-Pb-S, and Ag-Pb-S systems have been determined in evacuated silica tube experiments. Integration of experimental data from these systems has permitted examination and extrapolation of phase relations within the Ag-Bi-Pb-S quaternary system. — In the Ag-Bi-S system liquid immiscibility fields exist in the metal-rich portion above 597±3°C and in the sulfur-rich portion above 563±3°C. Ternary phases present correspond to matildite (AgBiS2) and pavonite (AgBi3S5). Throughout the temperature range 802±2°C to 343±2°C the assemblage argentite (Ag2S) + bismuth-rich liquid is stable; below 343°C this assemblage is replaced by the assemblage silver + matildite. — Five ternary phases are stable on the PbS-Bi2S3 join above 400°C — phase II (18 mol-% Bi2S3), phase III (27 mol-% Bi2S3), cosalite (33.3 mol-% Bi2S3), phase IV (51 mol-% Bi2S3), and phase V (65 mol-% Bi2S3). Phase IV corresponds to the mineral galenobismutite and is stable below 750±3°C. Phases II, III, and V do not occur as minerals, but typical lamellar and myrmekitic textures commonly observed among the Pb-Bi sulfosalts and galena evidence their previous existence in ores. Phase II and III are stable from 829±6°C and 816±6°C, respectively, to below 200°C; Phase V, stable only between 730±5°C and 680±5°C in the pure Bi-Pb-S system is stabilized to 625±5°C by the presence of 2% Ag2S. Experiments conducted with natural cosalites suggest that this phase is stable only below 425±25°C in the presence of vapor. — In the Ag-Pb-S system the silver-galena assemblage is stable below 784±2°C, whereas the argentite + galena mineral pair is stable below 605±5°C. — Solid solution between matildite and galena is complete above 215±15°C; below this temperature characteristic Widmanstätten structure-like textures are formed through exsolution. Schematic phase relations within the quaternary system are presented at 1050°C, at 400°C, and at low temperature.
Zusammenfassung Die Phasenbeziehungen in den Systemen Ag-Bi-S, Bi-Pb-S und Ag-Pb-S wurden durch Versuche in evakuierten Quarzglasröhrchen bestimmt. Die Auswertung aller experimentellen Daten gestattete eine Extrapolation der Phasenbeziehungen im quaternären System Ag-Bi-Pb-S. — Im System Ag-Bi-S besteht ein Zwei-Schemlzenfeld im metallreichen Teil über 597±3°C und im schwefelreichen Teil über 563±3°C. Die ternären Phasen entsprechen den Mineralien Schapbachit (AgBiS2) und Pavonit (AgBi3S5). Zwischen 802±2°C und 343±2°C ist die Paragenese Silberglanz (Ag2S) + Bi-reiche Schmelze stabil; unterhalb 343°C wird sie jedoch ersetzt durch die Paragenese Silber + Schapbachit. — Fünf ternäre Phasen sind stabil im Schnitt PbS-Bi2S3 oberhalb von 400°C: Phase II (18 Mol-% Bi2S3), Phase III (27 Mol-% Bi2S3), Cosalite (33.3 Mol-% Bi2S3), Phase IV (51 Mol-% Bi2S3) und Phase V (65 Mol-% Bi2S3). Phase IV entspricht dem Mineral Galenobismutit und ist stabil unterhalb 750±3°C. Die Phasen II, III und V kommen zwar nicht in der Natur vor, jedoch weisen typische myrmekitische und lamellare Gefüge, die man häufig in Pb-Bi-Sulfosalzen und deren Verwachsungen mit Bleiglanz beobachtet, auf die ehemalige Existenz solcher Phasen in diesen Erzen hin. Die Phasen II und III sind stabil von 829±6°C bzw. 816±6°C bis unter 200°C. Die Phase V, die im reinen System Bi-Pb-S zwischen 730±5°C und 680±5°C auftritt, wird in Gegenwart von 2% Ag2S stabilisiert bis herab zu 625±5°C. Versuche mit natürlichen Cosaliten lassen darauf schließen, daß diese Phase nur unterhalb 425±25°C in Gegenwart einer Gasphase stabil ist. — Im System Ag-Pb-S ist die Paragenese Silber-Bleiglanz unterhalb von 784±2°C stabil, die Paragenese Silberglanz-Bleiglanz dagegen unterhalb 605±5°C. — Die Mischkristallreihe von Schapbachit und Bleiglanz ist vollständig oberhalb 215±15°C; unterhalb dieser Temperatur entstehen charakteristische Entmischungsgefüge ähnlich den Widmannstättenschen Figuren. Für das quaternäre System werden schematische Phasenbeziehungen für 1050°C, 400°C und eine noch tiefere Temperatur gegeben.
  相似文献   

6.
Heyrovskýite has a composition range from 6(Pb0.83Bi0.10(Ag, Cu)0.07) S . Bi2S3 to 6(Pb0.92Bi0.05(Ag, Cu)0.03) S . Bi2S3. It is orthorhombic. Crystal forms {100}, {010}, {120}, {140}, {250}, and {321} (?) were observed; {010} and {140} are dominant. Elongated c, flattened (010). a:b:c morph=0.432:1:0.128. Cell parameters a=13.705±0.013 Å, b=31.194±0.033, c=4.121±0.003, a:b:c X-ray=0.439:1:0.132. The diffraction symbol is Bb, compatible with Bbmm, Bb21 m, Bbm2. Morphology corresponds to point groups mmm or mm2, reducing the possible space groups to Bbmm and Bbm2. Density at 20 °C is 7.17 g/cm3, calculated, 7.18; Z=4. Micro-indentation hardness (VHN) (50 g load) is 166 to 234 kp/mm2. Strongly anisotropic; reflectance strongly variable, roughly the same as of galena. Etch tests: HNO3 (1:1) and HCl (1:1) positive, FeCl3 20%, HgCl2 5%, KCN 20%, and KOH 40% all negative. Powder data are identical with those for phase II of Otto and Strunz (1968). Heyrovskýite is associated with galena and cosalite at H?rky, Czechoslovakia.  相似文献   

7.
The oxidation and dissolution mechanisms of galena (PbS) remain uncertain with a wide variety of possible mechanisms having been proposed in the literature. In this study, the thermodynamic viability of some possible mechanisms has been tested using semi-empirical quantum chemical calculations applied to a perfect (001) galena surface.The adsorption of O2 and H2O has been examined in both the gaseous and aqueous environments. In agreement with previous ab initio quantum chemical calculations, the surface induced dissociation of H2O in either environment was found to be energetically unfavourable. However, the dissociative adsorption of O2 was found to be possible and resulted in two O atoms bonded to diagonally adjacent S atoms with the O atoms oriented along the diagonal.The adsorption of H+ and possible subsequent dissolution mechanisms have been examined in the aqueous environment. An anaerobic mechanism leading to the dissolution of hydroxylated Pb2+ was identified. The mechanism involves the protonation of 3 surface S atoms surrounding a central surface Pb atom followed by substitution of this Pb by a further H+. The activation energy of this mechanism was estimated to be ≈100 kJ mol−1. Pb2+ dissolution could only occur with vacancy stabilisation by a H+. The analogous mechanisms for systems comprising H+ adsorbed on either 2 or 4 of the S atoms surrounding a central surface Pb were not found to be energetically viable. Subsequent dissolution of one of the protonated S atoms to form H2S(g) was not found to be possible thus indicating the likely formation of a Pb-deficient S-rich surface under acidic anaerobic conditions.Acidic aerobic dissolution has also been examined. Congruent dissolution to form H2SO4 and Pb2+•6H2O is energetically viable. The dissolution of one of the protonated S atoms neighbouring the Pb2+ vacancy, resulting from the anaerobic dissolution, to form H2SO4, is also possible.  相似文献   

8.
It is shown the possibility to determine the coordination of paramagnetic ions in disordered solid structures, e.g., in barium borate glasses. For this purpose the electron paramagnetic resonance (EPR) method was used to study α-and β-BaB2O4 crystals and glasses of 45·BaO × 55·B2O3 and 40·BaO × 60·B2O3 (mol%) composition activated by Ag+ and Pb2+ ions. After the samples were exposed to X-rays at 77 K, different EPR centers were observed in them. In α-and β-BaB2O4 crystals and glasses the EPR centers Ag2+, Ag0, Pb+, Pb3+, and hole centers of O type were studied. The EPR parameters of these centers and their arrangement in crystal structure were determined. It is shown that Pb3+ ions in β-BaB2O4 crystals occupy Ba2+ position in an irregular polyhedron from the eight oxygen, whereas in α-BaB2O4 crystals they occupy Bа2 position in a sixfold coordination. Pb+ ions in α-BaB2O4 crystals occupy Bа1 position in a ninefold coordination from oxygen. In barium borate glasses, Pb3+ ions were studied in coordination polyhedron from six oxygen atoms and in a polyhedron from nine to ten oxygen atoms. It is assumed that the established difference in the structural position of Pb3+ ions in glasses is due to their previous incorporation in associative cation–anion complexes (AC) and “free” structure-forming cations (FC). Computer simulations have been performed to analyze the stability of specific associative complexes and to compare their bond lengths with experimental data.  相似文献   

9.
Summary The gold-copper deposit at Waschgang (Southern Goldberg mountains, Upper Carinthia) belongs to a type of stratiform, dominantly pyritic deposit, which is hosted by greenschists (Alpine Kieslager;Friedrich, 1936). The ores occur as impregnations (ore type 1) and as massive ores (ore type 2) in prasinitic rocks of the Obere Schieferhülle of the Penninic unit. A N–S trending fault zone cuts the ore deposit to the W (Lettenkluft); the position of the displaced part is unknown.The mineralogical composition of type 1 ores is rather monotonous. Pyrite is the most important ore, minor components are chalcopyrite, bornite, sphalerite and magnetite. No visible native gold has been observed in this type of ore. Type 2 ores are dominated by chalcopyrite and are characterized by large amounts of visible native gold. The majority of these ores occur in the vicinity of the Lettenkluft.Type 2 ores carry a great variety of cogenetic mineral inclusions, of which several have been studied with the electron microprobe and investigated by X-ray methods. These include: tetradymite, Bi2Te1.81Se0.13S; hessite, Ag2Te; matildite, AgBiS2; gladite, Cu1.09Pb1.14Bi5.28S9; krupkaite, CuPbBiS6; pekoite, Cu1.09Pb0.97Bi12.56S18; (?) benjaminite, (Ag2.72Cu0.42)3.14 (Bi6.88Pb0.12)7(S11.08Se0.92)12; pavonite, (Ag0.74Cu0.45)1.19(Bi2.86Pb0.27)3.13 (S4.96Se0.04)5; (?) cupropavonite, (Cu0.73Ag0.4)1.13(Bi2.59Pb0.83)3.42S5; and siegenite, (Ni1.07Co1.76Cu0.19)3.02S4. Other components have been determined by qualitative and quantitative microscopy and include: bornite, idaite, mawsonite, sphalerite, millerite, magnetite, hematite, ilmenite, rutile and a variety of silicates.While the layered ore impregnations (type 1 ores) can be considered as being syngenetic with the associated volcanics of Jurassic age, a syn- to postkinematic (Alpidic) crystallization can be postulated for the type 2 ores. These ores are considered as remobilized and reconcentrated parts of the type 1 ores formed in tectonic stress zones. The crystallization of chalcopyrite and included ore minerals occurred during the cooling history of Alpidic metamorphism, for which in this region a maximum temperature of 500°C and pressures between 4–6 kb have been deduced from the mineral assemblage of the surrounding prasinites, consisting of albite with rims of oligoclase, epidote, chlorite, sphene and amphibole (Höck, 1980). Based onSpringer's limit of 300°C as approximately representing the maximum temperature at which natural members of the bismuthinite-aikinite mineral series have been formed, krupkaite and gladite with the intergrown pavonite type phases might have been deposited directly from solutions at or below 300°C. Unmixing of pekoite from gladite probably occurred at or below the same temperature.
Zur Erzmineralogie der Gold-Kupfer-Lagerstätte Waschgang, Oberkärnten, Österreich
Zusammenfassung Die Gold-Kupfer-Lagerstätte Waschgang (südliche Goldberggruppe, Oberkärnten) ist dem Typus der stratiformen Kiesvererzungen in Grüngesteinen (Alpine Kieslager;Friedrich, 1936) zuzurechnen. Die Erzmineralisationen treten als stoffkonkordante Imprägnationen (Vererzungstypus 1) und als Derberze (Vererzungstypus 2) in Prasiniten der Oberen Schieferhülle des Penninikums auf. Das Erzlager wird im W an einer N–S streichenden Störung abgeschnitten; die Position des verworfenen W-Flügels ist nicht bekannt.Die Imprägnationserze sind in ihrer mineralogischen Zusammensetzung monoton; Pyrit als Haupterz überwiegt bei weitem die sporadischen Begleiter Kupferkies, Bornit, Sphalerit und Magnetit. Dieser Typus führt kein Freigold.Die von Kupferkies dominierten und an Freigold reichen Derberze treten vor allem im Bereich der Lettenkluft auf. Sie sind durch eine Vielfalt zum Teil komplex zusammengesetzter Einschlußminerale gekennzeichnet, von denen einige mittels Mikrosonde und röntgenographischer Methoden untersucht wurden: Tetradymit, Bi2Te1,81Se0,13S; Hessit, Ag2Te; Matildit, AgBiS2; Gladit, Cu1,09Pb1,14Bi5,28S9; Krupkait, CuPbBiS6; Pekoit, Cu1,09Pb0,97Bi12,56S18; (?) Benjaminit (Ag2,72Cu0,42)3,14(Bi6,88Pb0,12)7(S11,08Se0,92)12; Pavonit, (Ag0,74Cu0,45)1,19(Bi2,86Pb0,27)3,13 (S4,96Se0,04)5; (?) Cupropavonit, (Cu0,73Ag0,4)1,13(Bi2,59Pb0,83)3,42S5; Siegenit, (Ni1,07Co1,76 Cu0,19)3,02S4. Andere Mineralphasen wurden mittels qualitativer und quantitativer Mikroskopie bestimmt: Bornit, Idait, Mawsonit, Sphalerit, Millerit, Magnetit, Hämatit, Ilmenit, Rutil und Silikate.Während die stoffkonkordaten Imprägnationserze syngenetisch mit den assoziierten jurassischen Vulkaniten anzusehen sind, wird für die Derberze eine syn- bis postkinematische Kristallisation angenommen. Sie sind als remobilisierte und rekonzentrierte Teile der Imprägnationserze in tektonisch besonders beanspruchten Lagerstättenteilen anzusehen. Die Kristallisation des Kupferkieses und seiner Einschlußminerale erfolgte während der Abkühlungsphase der alpidischen Metamorphose, für die im betrachteten Gebiet eine Maximaltemperatur von ca. 500°C und Drucke zwischen 4–6 kb aufgrund der Petrologie der erzführenden Prasinite angenommen werden können. Die dafür maßgebende Paragenese besteht aus Albit mit Oligoklasrändern, Epidot, Chlorit, Sphen und Amphibol (Höck, 1980). Zieht man die vonSpringer (1971) ermittelte Stabilitätsgrenze von ±300°C für natürliche Mischkristalle der Bismuthinit-Aikinit-Reihe in Betracht, können für Krupkait und Gladit und den damit verwachsenen Pavonit-Phasen Bildungstemperaturen um oder unterhalb 300°C angenommen werden. Die Kristallisation dieser Minerale dürfte dabei direkt aus Lösungen erfolgt sein. Die als Entmischungsstrukturen interpretierten Gladit-Pekoit-Verwachsungen legen den Schluß einer primären Bildung beider Minerale als feste Lösung nahe, deren Zerfall vermutlich unterhalb von 300°C erfolgte.


With 13 Figures

Herrn em. Univ.-Prof. Dr.-Ing. O. M. Friedrich zum 80. Geburtstag in Dankbarkeit gewidmet

This investigation forms part 2 of a major study on Genetic Types of Gold Deposits of the Alps.  相似文献   

10.
Zusammenfassung Bei dem Versuch, die Kristallstruktur von Bonchevit zu bestimmen, stellte sich heraus, daß dieses Mineral—bis dahin PbBi4S7—aus zwei Phasen besteht. Der Hauptanteil wurde eindeutig als Galenobismutit identifiziert. Der Rest wies nach den Gitterkonstanten (a0=13,58±0,02 Å, b0=20,51±0,07 Å, c0=4,09±0,07 Å) auf ein bisher unbekanntes Mineral hin. Die Raumgruppe ist Bbmm. Ein indiziertes Pulverdiagramm und die dazugehörigen d-Werte werden angegeben.Die Emissionsspektralanalyse zeigt Pb und Bi als Hauptkomponenten, Cu und Ag als Nebenkomponenten und Spuren von Zn und Sn. Die Strukturanalyse führte zu der Formel Me5S6, wobei die Me-Atome etwa gleich schwer sind, so daß als chemischo Formel nur Pb3Bi2S6 mit Z=4 in Frage kommt.Strukturell gehört das Mineral in die Gruppe Andorit-Ramdohrit-Fizelyit. Die Verwandtschaft bzw. Identität des Minerals mit anderen Mineralen und synthetischen Verbindungen wird diskutiert.
Mineralogical data on a sulphosalt from the Rhodope mountains, Bulgaria
Summary During an attempt to determine the crystal structure of bonchevite, this mineral was found to consist of two phases. Previously it was thought to have the composition PbBi4S7. The main constituent could unambiguously be identified as galenobismutite. For the rest the lattice constants (a0=13.58±0,02 Å, b0=20.51±0,07 Å, c0=4.09±0.07 Å), indicated a new mineral. Space group is Bbmm. An indexed powder diagram (with d-values) is given.The emission spectrographic analysis shows Pb and Bi to be main components, Cu and Ag to be minor components, and traces only of Zn and Sn. The structure analysis has led to the formula Me5S6, with Me-atoms of approximately the same atomic number; therefore, the chemical formula has to be Pb3Bi2S6, with Z=4.In a structural classification the mineral belongs to the andoriteramdohrite-fizelyite-group. The relationships to or the identity with other minerals and synthetic compounds are discussed.
  相似文献   

11.
Electron microprobe analysis of Pb-Cu(Fe)-Sb-Bi sulfosalts from Bazoges and Les Chalanches (France), and Pedra Luz (Portugal), give new data about (Bi, Sb) solid-solution and incorporation of the minor elements Cu, Fe or Ag in jaskolskiite, and in izoklakeite-giessenite and kobellite-tintinaite series. Jaskolskiite from Pedra Luz has high Sb contents (from 17.9 to 20.7 wt.%), leading to the extended general formula: Cu x Pb2+x (Sb1–y Bi y )2–x S5, with 0.10 x 0.22 and 0.19 y 0.41. Fe-free, Bi-rich izoklakeite from Bazoges has high Ag contents (up to 2.2 wt. %), leading to the simplified formula Cu2Pb22Ag2(Bi, Sb)22S57; in Les Chalanches it contains less Ag content (1.2 wt.%), but has an excess of Cu that gives the formula: Cu2.00 (Cu0.49Ag1.18)=1.67Pb22.70(Bi12.63Sb8.99)=21.62S57.27.In tintinaite from Pedra Luz, the variation of the Fe/Cu ratio can be explained by the substitution: Cu + (Bi, Sb) Fe + Pb; Fe-free kobellite from Les Chalanches has a Cu-excess, corresponding to the formula Cu2.81Ag0.54Pb9.88(Bi10.37Sb5.21)=15.38S35.09. Eclarite from the type locality, structurally related to kobellite, shows a Cu excess too. In natural samples of the kobellite homologous series, Fe is positively correlated with Pb, and its contents never exceed that of Cu. Ag substitutes for Pb, together with (Bi, Sb). Taking into account the possibility of Cu excess, but excluding formal Cu2+ and Fe3+, general formulae can be written:  相似文献   

12.
Crystal structure of Bi2S3 was refined at eight distinct hydrostatic pressures in the range 0–10 GPa using a CCD equipped 4-circle diffractometer and a diamond-anvil cell. Coefficients of the BM3 equation of state are as follows: zero-pressure volume 498.4(7) Å3, bulk modulus K 0 36.6(15) GPa and its pressure derivative 6.4(5). The bulk of compression takes place in the structural space between Bi4S6 ribbons, where lone-electron pairs are accommodated. Eccentricity of Bi in its coordination polyhedra decreases in the process, with long Bi–S distances decreasing, whereas the opposing short Bi–S distances stay constant or even increase in length. All these phenomena are compatible with the movement of lone-electron pairs of Bi closer to the parent atom at increasing pressure.  相似文献   

13.
The Hiendelaencina mining district (Guadalajara, Spain), includes the ore deposits of the Hiendelaencina, La Bodera and Congostrina areas. In this paper a general overview of this district is given, with special emphasis on the parageneses, mineralizing stages and chemical characteristics of the sulphides and sulphosalts. These deposits contain silver in Sb-rich sulphosalts such as freibergite, pyrargyrite, polybasite, stephanite, freieslebenite and the Bi-rich sulphosalt, aramayoite. Three mineralizing stages have been detected in Hiendelaencina and Congostrina: (1) As-Fe; (2) Cu-Zn-Fe-Sb-Ag; and (3) Pb-Sb-Ag (±Bi) but only two in La Bodera (stages 2 and 3). The average sulphosalt formulas are: freibergite (Cu0.5 Ag5.9) (Fe1.42 Zn0.66) (Sb4.49 As0.02) S13; pyrargyrite Ag3.38 Sb1.0 S3; polybasite (Ag16.3Cu0.15) (Sb2.8 As0.15) S11; stephanite Ag6.7 Sb1.38 S4; freieslebenite Ag1.1 Sb0.83 Pb1.05 S3 and aramayoite Ag1.06 Bi0. 35 Sb0.7 Pb0.03 S2. The compositional patterns of these sulphosalts (mainly based on the Sb/(Sb + Ag), Ag/ (Ag + Cu), Sb(Ag + As) and Ag/(Ag + Cu) ratios) are outlined, pointing broadly to similar tendencies in their chemistry and genetic conditions.  相似文献   

14.
Cu-poor meneghinite from La Lauzière Massif (Savoy, France) has the composition (electron microprobe) (in wt%): Pb 59.50, Sb 20.33, Bi 1.19, Cu 0.87, Ag 0.05, Fe 0.03, S 17.62, Se 0.05, Total 99.64. Its crystal structure (X-ray on a single crystal) was solved with R1=0.0506, wR2=0.1026, with an orthorhombic symmetry, space group Pnma, and a=24.080(5) Å, b=4.1276(8) Å, c=11.369(2) Å, V=1130.0(4) Å3, Z=4. Relatively to the model of Euler and Hellner (1960), this structure shows a significantly lower site occupancy factor for the tetrahedral Cu site (0.146 against 0.25). Among the five other metallic sites, Bi appears in the one with predominant Sb. Developed structural formula: Cu0.15Pb2(Pb0.53Sb0.47)(Pb0.46Sb0.54)(Sb0.75Pb0.19Bi0.06)S6; the reduced one: Cu0.58Pb12.72(Sb7.04Bi0.24)S24. The formation of such a Cu-poor variety seems to be related to specific paragenetic conditions (absence of coexisting galena), or to crystallochemical constraints (minor Bi). To cite this article: Y. Moëlo et al., C. R. Geoscience 334 (2002) 529–536.  相似文献   

15.
The copper deposit La Leona consists of ore veins in a granite batholite which intruded into Permian sediments. In these veins the following minerals are observed: pyrite, sphalerite, chalcopyrite, galena, betekhtinite, two Bisulfosalts, electrum, bornite, chalcocite, enargite, tennantite, Zn-Fahlerz, cuprite, delafossite, molybdenite, hematite and iron hydroxides, and copper carbonates with quartz and iron carbonates as gangue. The betekhtinite, (CuFe)10Pb S6, found for the first time in Argentina, the Zn-Fahlerz and the sulfosalts (Cu3.2Bi1.2Pb1.2S8.5) and (Cu9.3Bi1.1S6.8) were studied in detail under the microscope, by X-rays and by microprobe. Specifically, the paragenesis of these three minerals with galena, chalcocite and bornite is discussed.
Résumé Le gisement de cuivre de la mine «La Leona» est formé de filons de minerais recoupant un batholite granitique qui a fait intrusion dans des sédiments permiens. Les minéraus suivants ont été observés: pyrite, blende, chalcopyrite, galène, bétekhtinite, deux sulfosels de Bi, électrum, bornite, chalcosine, énargite, tennantite, «Zn-Fahlerz», cuprite, delafossite, molybdénite, hématite et hydroxydes de fer, des carbonates de cuivre, dans une gangue de quartz et de carbonates de fer. La bétekhtinite (Cu Fe)10Pb S6, trouvée pour la première fois en Argentine, le «Zn-Fahlerz» et les sulfosels (Cu3.2Bi1.2Pb1.2S8.5) et (Cu9.3Bi1.1S6.8) ont été spécialement étudiés à l'aide de la microscopie, de la diffraction des rayons-X et de la microsonde. La paragénèse formée par ces trois mineraux associés à la galène, la chalcosine et la bornite est discutée.
  相似文献   

16.
We have interpreted a number of luminescence centers in natural tugtupite Na8Al2Be2Si8O24Cl2, sodalite Na8Al6Si6O24C2 and hackmanite Na8Al6Si6O24(Cl2,S) by use of laser-induced time-resolved luminescence spectroscopy. The main new results are the following: Fe3+, Mn2+, Eu2+, Ce3+, mercury type (potentially Pb2+, Tl+, Sn2+ and/or Sb3+), radiation induced luminescence centers; several types of S2 centers. Spectral shift connected with the presence of luminescence centers, which are detected together with S2 centers and impossible to resolve with continuous wave luminescence spectroscopy, is the possible reason for spectral diversity of S2 luminescence centers presented in different publications.  相似文献   

17.
The Beiya deposit, located in the Sanjiang Tethyan tectonic domain (SW China), is the third largest Au deposit in China (323 t Au @ 2.47 g/t). As a porphyry-skarn deposit, Beiya is related to Cenozoic (Himalayan) alkaline porphyries. Abundant Bi-minerals have been recognized from both the porphyry- and skarn- ores, comprising bismuthinite, Bi–Cu sulfosalts (emplectite, wittichenite), Bi–Pb sulfosalts (galenobismutite, cosalite), Bi–Ag sulfosalt (matildite), Bi–Cu–Pb sulfosalts (bismuthinite derivatives), Bi–Pb–Ag sulfosalts (lillianite homologs, galena-matildite series), and Bi chalcogenides (tsumoite, the unnamed Bi2Te, the unnamed Ag4Bi3Te3, tetradymite, and the unnamed (Bi, Pb)3(Te, S)4). Native bismuth and maldonite are also found in the skarn ores. The arsenopyrite geothermometer reveals that the porphyry Au mineralization took place at temperatures in the range of 350–450 °C and at log fS2 in the range of − 8.0 to − 5.5, respectively. In contrast, the Beiya Bi-mineral assemblages indicate that the skarn ore-forming fluids had minimum temperatures of 230–175 °C (prevailing temperatures exceeding 271 °C) and fluctuating fS2fTe2 conditions. We also model a prolonged skarn Au mineralization history at Beiya, including at least two episodes of Bi melts scavenging Au. We thus suggest that this process was among the most effective Au-enrichment mechanisms at Beiya.  相似文献   

18.
Abstract: Se-bearing benjaminite and matildite are described from the polymetallic zone of the Ikuno deposits, Japan. The former is the first occurrence in Japan, and is from two separate veins, the Nanten and Daimaru, while the locality of the latter could not be specified. The empirical formulae of two benjaminites based on 22 atoms are (Ag2. 74Cu0. 24)Σ2. 98(Bi7. 00Sb0. 01)Σ7. 01(S10. 89Se1. 12)Σ12. 01 (Nanten) and (Ag2. 90Cu0. 10)Σ3. 00(Bi6. 74Pb0. 18Sb0. 07)Σ6. 99(S11. 68Se0.33)Σ12. 01 (Daimaru), leading to the validation of the formula Ag3Bi7S12 as the ideal one for benjaminite, and that of matildite based on 4 atoms is Ag1. 00Bi1. 00(S1. 78Se0. 222. 00. These designate the substitution of Se for S in all of them, where Se is preferentially incorporated into these Ag-Bi sulphosalts. The unit-cell parameters of them and matildite are: a 13. 272, b 4. 037, c 20. 185 Å, and β 103. 16° (Daimaru), a 13. 270, b 4. 040, c 20. 273 Å, and β103. 17° (Nanten); and a 4. 0670, c 18. 996 Å, respectively. The products of Au-Ag mineralization in the Ikuno polymetallic vein-type deposits also occur as such Ag-Bi sulfosalts as benjaminite and matildite, in addition to pavonite, “treasurite derivative” and “electrum” with cassiterite in the polymetallic zone, and also do as “electrum”, acanthite, and pyrargyrite-proustite in the Au-Ag zone. The significant quantity of the Ag-Bi sulfosalts does not violate the zoning occupying the outermost part of the zonal distribution of ores in the deposits.  相似文献   

19.
Silica-tube quenching experiments and gold-tube pressure experiments were used to study phase relations in the PbS-rich portion of the system Pb-As-S. Emphasis was placed on determining the P-T-X stability relations of jordanite, the most Pb-rich of the synthetic Pb-As-S compounds. Jordanite, Pb9As4S15, is stable below 549 ± 3° C, at which temperature it melts to galena, liquid, and a sulfur-rich vapor phase. Confining pressures of up to 2 Kb do not measurably change this reaction temperature. Density measurements on synthetic material show that the jordanite cell contains 3 (Pb9As4S15); space group P21/m requires that the cell content be expressed as either Pb28–xAs12S46–x or Pb26+xAs12S44+x, with the former much more probable from a structural point of view. In both cases 0.8 < x < 1.4 and the situation is thus quite different from the usual case of defect structures, such as pyrrhotite, Fe1–xS, which shows considerable range of solid solution. Heating experiments on natural gratonite (Pb9As4S15) show that this mineral is most probably a low-temperature dimorph of jordanite, the inversion occurring below 250° C. Experiments have also confirmed the extensive substitution of Sb for As in jordanite, as suspected from chemical analyses of the isostructural mineral geocronite (Pb28–x(As,Sb)12S46–x).
Zusammenfassung Durch Abschreckversuche mit Hilfe von Quarz- und Gold-Druckampullen wurden die Phasenbeziehungen im PbS-reichen Teil des Pb-As-S-Systems studiert. Besonderer Wert wurde auf die Feststellung der P-T-X-Stabilitätsverhältnisse des Jordanits, des Pb-reichsten Phase der synthetischen Pb-As-S-Reihe, gelegt. Jordanit (Pb9As4S15) ist unterhalb 549 ± 3° C stabil, wo er sich semikongruent zu PbS, einer Schmelze und einer schwefelreichen Dampfphase zersetzt. Drucke bis zu 2 kb ergaben keine meßbaren Änderungen dieser Reaktionstemperatur. Dichtemessungen am synthetischen Material weisen darauf hin, daß die Jordanitzelle 3 × (Pb9As4S15) enthält. Die Raumgruppe P21/m fordert entweder die Formel Pb28–xAs12S46–x oder Pb26+xAs12S44+x, wobei die erstere Form strukturell wahrscheinlicher zu sein scheint. In beiden Fällen ist 0.8 < x < 1.4 und weicht vom gebräuchlichen Begriff der Defektstrukturen, wie z.B. beim Pyrrhotin (Fe1–xS) ab, wie das bemerkenswerte Mischkristallfeld zeigt. Erhitzen von natürlichem Gratonit (Pb9As4S15) zeigt, daß dieses Mineral sehr wahrscheinlich eine dimorphe Tieftemperaturphase des Jordanits ist. Die Umwandlung erfolgt unterhalb 250° C. Außerdem wurde eine umfangreichere Substitution von As durch Sb im Jordanit festgestellt, was nach den chemischen Analysen des isostrukturellen Geochronits Pb28–x(As,Sb)12S46–x) zu erwarten war.
  相似文献   

20.
Triplicate porewater lead concentration profiles were determined on six occasions in a Canadian Shield lake. Total Pb concentrations were also measured in a dated core obtained at the same site. This information, as well as an extensive dataset comprising ancillary geochemical measurements on porewaters and sediment and the population densities of benthic animals, is used in a one-dimensional transport-reaction diagenetic model to investigate the transport and mobilization of Pb in these sediments. Application of the model consistently indicates the presence of a zone of Pb production to the porewaters that lies above a zone of Pb consumption. The profiles of various porewater constituents and thermodynamic calculations indicate that Pb is mobilized in the zone of production by the reductive dissolution of iron oxyhydroxides, whereas it is removed in the zone of consumption by precipitation as a solid sulfide. Rate constants are estimated for reductive iron dissolution (kdFe(III) = 2.0 ± 0.5 × 10−1 cm3 mol−1 s−1), Pb adsorption on iron oxyhydroxides (kadsPb = 98 ± 55 cm3 mol−1 s−1), and Pb precipitation (kpptPb = 8 × 10−20 mol cm−3 s−1 to 16 ± 13 × 10−22 mol cm−3 s−1, depending on the solubility product assumed for the precipitation of PbS). According to model calculations, diagenetic processes, such as remobilization, molecular diffusion, bioturbation, and bioirrigation have a negligible influence on the solid phase Pb profile. In agreement with this finding, the present-day fluxes of dissolved Pb by diffusion (JDPb = −6.5 × 10−11 mol cm−2 yr−1), bioturbation (JBPb = −1.1 × 10−13 mol cm−2 yr−1), and bioirrigation (JIPb = −1.5 × 10−11 mol cm−2 yr−1) are small compared to the flux of Pb deposited with settling particles (JSPb = 5.3 × 10−9 mol cm−2 yr−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号