首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural state of diaplectic labradorite glass (≈An58) from the Manicouagan impact crater and of its fusion-formed glass analog have been investigated by X-ray diffraction studies. The experimental X-ray intensity distribution patterns indicate that the diaplectic and fusion-formed glasses are structurally rather similar, the former being apparently slightly less disordered. Theoretical X-ray distribution curves have been calculated using the structure of high albite as a quasi-crystalline model of the glass structure. The experimental and theoretical curves show fair similarity when the calculations are based on the complete unit cell. It is inferred therefore, that the structures of both kinds of glasses possess an average short range order comparable to that in high albite and extending to about the dimensions of the unit cell. In addition, the experimental X-ray scattering pattern and X-ray Debye-Scherrer transmission photographs of the diaplectic glass reveal the presence of relics up to about 8 nm in size of the previous crystalline lattice of the primary labradorite. The present results support Grady's shear band model according to which diaplectic glass may represent the quench product of a shock-generated high-density melt frozen in prior to total pressure release.  相似文献   

2.
Enthalpies of solution in molten 2PbO·B2O3 at ~988 K have been measured for diaplectic labradorite glass from the Manicouagan impact crater and a fused glass formed from the same material. The enthalpies of solution of the diaplectic and fusion-formed glasses are 4,347 and 2,023 cal mol?1, respectively. The more endothermic enthalpy of solution of the diaplectic glass indicates a greater relative energetic stability of about 2.3 kcal mol?1. The data are consistent with Diemann and Arndt's (1984) structural model that suggests the diaplectic glass is more ordered than fusion-formed glass and with the presence of crystallites. Comparison of data to enthalpies of solution of crystalline labradorite (Carpenter et al. 1985) indicates a maximum percentage of crystalline relics of ~15–18%, also consistent with Diemann and Arndt's (1984) estimate of <17%. Thus the diaplectic glass is intermediate in thermochemical properties between normal glass and crystal (much closer to glass) and does not represent any state more unstable than normal fusion-formed glass.  相似文献   

3.
A CdSe high-pressure polymorph of the NaCl structural type of a0 = 0.549 nm and Fm–3m space group was discovered in nature for the first time. Its composition is within range of CdSe–CdSe1–х where x = 0.2 apfu. The phase was discovered as abundant nanosize inclusions in irgizite-type condensate glass separated from the sample of impact rock of the Zhamanshin crater (Central Kazakhstan). The treated mineral was presumably formed within a gas–plasma cloud at the moment of impact.  相似文献   

4.
Glass from the West Clearwater Lake hypervelocity impact crater contains numerous spheroids, 10 to 500 μm across, which appear to have formed at high temperatures as fluids immiscible in the enclosing melt. The spheroids are distinguished from small, normal, largely void gas vesicles, which are also present, by being completely filled in all cases; by having fillings which vary in composition from spheroid to spheroid, even between spheroids in close association; and by indications that the present fillings are representative of the contents present before the matrix melt chilled. Most of the spheroids are classified petrographically into three types. Type I, the most numerous, includes all spheroids>100 μm and are filled with uncommon pale brown to yellow montmorillonites with an unusual structure intermediate between dioctahedral montmorillonite and saponite. Type II, brown and green, are filled with Fe-rich montmorillonites, while Type III are aluminia-rich montmorillonites crystallized into mica-like sheaves. Rare, small spheroids are filled with calcite or silica. In a few cases one spheroid encloses another of similar or different type. Electron microprobe analyses indicate that with few exceptions Types I and III spheroids belong to a Mg series of montmorillonites in which the main chemical variation is the substitution of Mg for Al. A second Fe-K series includes Type II and a few Type I spheroids and shows substitution of Fe by Al, relatively high K2O and, in the alumina-rich members, low SiO2. The close association of spheroids with deformed, embayed lechatelierite inclusions indicates that they formed while the latter were liquid, i.e. at temperatures above 1700°C, as rapidly moving impact melt engulfed highly shocked inclusions of quartz-bearing country rock. The preservation of spheroids in the West Clearwater Lake glass is attributed mainly to the position of the glass masses within the breccias lining the crater floor. It is considered that the glass in this location did not achieve free flight but, as part of a large mass, cooled relatively slowly through the high temperature regime in which the spheroids were generated, and then, when detached, chilled rapidly to preserve a record of this transient stage in their history.  相似文献   

5.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

6.
The Tswaing meteorite impact crater is a 1.13 km diameter structure located in the 2.05 Ga Nebo granite of the Bushveld Complex. The impact age had previously been determined by fission track dating to 220 ± 104 ka. 40Ar/39Ar step-heating and total fusion experiments performed on single- and multi-grain impact glass aliquots gave apparent ages ranging from 1.0 ± 0.3 Ma to 204 ± 6 Ma. These “ages” indicate that the radiogenic Ar derived from the target rocks has not been completely degassed as a result of the impact process, despite fusion of the target material. Results of step-heating experiments imply that the trapped within the glass is located in two distinct reservoirs thought to be the glass matrix and fluid/vapor inclusions (or un-melted residual clasts). Calculations assuming an age of 0.2 ± 0.1 Ma for Tswaing (fission track data) reveal that the amount of inherited 40Ar*() relative to the pre-impact concentration varies from 0.015% to 4.15%. The spread defined by likely reflects the various quench rates experienced by the glass, most certainly due to the pre-impact position of the sample relative to the center of the crater. We compare the influence of on the apparent 40Ar/39Ar age determination of five impact structures. Our calculations show that the main characteristic controlling the age offset (for a given proportion of ) is the age difference between the impact and the target rocks (i.e., the 40Ar* concentration in the target rock). The buffer effect for a given crater structure can be predicted knowing the age of the basement and having a rough estimation of the age of the crater structure itself. The occurrence of is likely influenced by (1) the degree of polymerization (i.e., silicate structure complexity) of the target rock and presumably related to the diffusivity of Ar in the melt and glass, (2) the Ar partial pressure at the grain boundary, (3) the quantity of energy involved in the impact, and (4) the porosity of the target rocks. For glass that inevitably suffers inherited and/or excess 40Ar*, the use of the inverse isochron technique can be appropriate but should be applied with careful statistical treatment.  相似文献   

7.
The gravity survey of the Steinheim impact crater comprises about 500 gravity stations resulting in aBouguer anomaly map of the crater and its surroundings. From this map aBouguer residual anomaly of the impact structure was deduced which shows considerable character. A central negative anomaly with an amplitude of about -2 mgal and a halfwidth of 3 km is surrounded by ring-like relative positive and negative anomalies which extend to a radial distance of about 5–6 km. The interpretation is based on nine radial profiles with close station spacing. Model calculations were performed suggesting the Steinheim crater to be much larger and of different formation than has been assumed. Based on the gravity interpretation, on a morphological analysis, and on additional geological and geophysical observations a model of the Steinheim crater and its development is proposed. The main characteristics are a 500–600 m deep primary excavation and a final, apparent, diameter of roughly 7 km, contrasting to an up to now favoured shallow excavation and a 3.5–4 km final diameter. The model considerations include mass and energy calculations and references to the Ries impact crater.
Zusammenfassung Im Gebiet der Impakt-Struktur Steinheimer Becken wurden in Ergänzung zu früheren Untersuchungen neue Schweremessungen durchgeführt. Mit den nunmehr etwa 500 vorliegenden, nachBouguer reduzierten Schwerewerten wurde eine Karte derBouguer-Anomalien konstruiert, aus der nach Abzug eines Regionalfeldes eine Restfeld-Anomalie für den Impakt-Krater gewonnen wurde. Sie ist grob rotationssymmetrisch und zeigt außerhalb eines zentralen Schwereminimums von –2 mgal ringförmig angeordnete, relative positive und negative Schwereanomalien. Die Interpretation stützt sich auf neun radiale Profile erhöhter Stationsdichte, von denen vier für Modellrechnungen ausgewählt wurden. Auf Grund der berechneten Dichtemodelle, einer ergänzenden morphologischen Analyse der Kraterstruktur sowie zusätzlicher geologischer und geophysikalischer Befunde wird ein Modell für den Aufbau und die Entstehung des Steinheimer Beckens vorgeschlagen. Danach ist das heutige Becken mit einem Durchmesser von rund 3,5 km der Ausdruck einer primären Kraterstruktur, die in einer Exkavationsphase entstand und eine Tiefe von 500–600 m besaß. Ausgleichsbewegungen führten zu einer Massenkonvergenz und Anhebung in der Kratermitte und einer Absenkung außerhalb des primären Kraters, die die endgültige Struktur auf grob 7 km Durchmesser vergrößerte. Die Modell-Betrachtungen schließen Massen- und Energieabschätzungen sowie Vergleiche zum Ries-Krater ein.

Résumé La recherche gravimétrique dans le cratère d'impact de Steinheim et ses environs (Allemagne du Sud) comprend environ 500 stations de mesure qui ont été utilisées pour construire une carte des anomalies deBouguer. Un champ régional a été tracé pour obtenir l'anomalie résiduelle du cratère. On observe une anomalie négative (–2 mgal) au centre de la structure cernée d'anomalies positives et négatives relatives de faible amplitude, jusqu'à une distance radiale de 5–6 km. Pour l'interprétation neuf profils radiaux, où les stations sont à faible distance, ont été utilisés. Les modèles calculés pour quatre profils radiaux suggèrent que la structure de Steinheim est plus grande qu'on ne l'a supposé jusqu'à présent. En partant de l'interprétation des mesures gravimétriques, d'une analyse topographique du cratère et d'observations géologiques et géophysiques complémentaires un modèle de la structure Steinheim et de son développement est proposé. On en conclut que le bassin actuel avec un diamètre de 3,5 km est l'expression d'une structureprimaire du cratère qui s'est formée au cours d'une phase d'excavation et possédait une profondeur de 500–600 mètres. Des mouvements d'égalisation conduisirent à une convergence de masses avec soulèvement dans le centre du cratère et un affaissement à l'extérieur du cratère primaire, lequel s'accrut jusqu'à la structure finale de quelque 7 km. Le modèle inclut le calcul des masses déplacées et des énergies d'impact ainsi qu'une comparaison avec le cratère d'impact du Ries.

, . 500 , , , , . – 2 , . 9- , 4 . . 3,5 , 500 – 600 . , , , 7 . , .
  相似文献   

8.
The so‐called ‘Tunguska Event’ refers to a major explosion that occurred on 30 June 1908 in the Tunguska region of Siberia, causing the destruction of over 2000 km2 of taiga, globally detected pressure and seismic waves, and bright luminescence in the night skies of Europe and Central Asia, combined with other unusual phenomena. The ‘Tunguska Event’ may be related to the impact with the Earth of a cosmic body that exploded about 5–10 km above ground, releasing in the atmosphere 10–15 Mton of energy. Fragments of the impacting body have never been found, and its nature (comet or asteroid) is still a matter of debate. We report results from the investigation of Lake Cheko, located ∼8 km NNW of the inferred explosion epicenter. Its funnel‐like bottom morphology and the structure of its sedimentary deposits, revealed by acoustic imagery and direct sampling, all suggest that the lake fills an impact crater. Lake Cheko may have formed due to a secondary impact onto alluvial swampy ground; the size and shape of the crater may have been affected by the nature of the ground and by impact‐related melting and degassing of a permafrost layer.  相似文献   

9.
The 27.2 km diameter Tooting crater is the best preserved young impact crater of its size on Mars. It offers an unprecedented opportunity to study impact-related phenomena as well the geology of the crust in the Amazonis Planitia region of Mars. For example, the nearly pristine condition enables the partial reconstruction of the sequence of events for crater formation, as well as facilitates a comparison to deposits seen at the Ries crater in Germany. High-resolution images taken by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) on the Mars Reconnaissance Orbiter spacecraft have revealed a wealth of information on the distribution of features within the crater and beyond the rim: a large central peak, pitted material on the floor and terrace blocks, lobate flows interpreted to be sediment flows, impact melt sheets, four discrete layers of ejecta, and an asymmetric secondary crater field. Topographic data derived from the Mars Orbiter Laser Altimeter (MOLA) and stereo HiRISE and CTX images show that the central peak is ~1100 m high, the lowest point of the crater floor is 1274 m below the highest part of the rim, and the crater rim has ~600 m of variability around its perimeter. Layering within the cavity walls indicates ~260 m of structural uplift of the target material, which constitutes ~35% of the total relief of the rim. Abundant evidence is found for water flowing down the cavity walls, and on the surface of the ejecta layers, both of which took place sometime after the impact event. Thickness measurements of the ejecta layers reveal that the continuous blanket is remarkably thin (~3–5 m) in some places, and that the distal ramparts may be ~60 m high. Crater counts made on the ejecta layers indicate a model age of <3 Ma for the formation of Tooting crater, and that the target rocks have a model age of ~240–375 Ma. It is therefore possible that this may be the source of certain basaltic shergottite meteorites ejected at ~2.8 Ma that have crystallization ages which are comparable to those of the basaltic lava flows that formed the target materials for this impact event. The geology and geomorphology of Tooting crater may help in the interpretation of older large impact craters on Mars, as well as the potential role of target volatiles in the impact cratering process.  相似文献   

10.
Cheko, a small lake located in Siberia close to the epicentre of the 1908 Tunguska explosion, might fill a crater left by the impact of a fragment of a Cosmic Body. Sediment cores from the lake’s bottom were studied to support or reject this hypothesis. A 175‐cm long core, collected near the center of the lake, consists of an upper ~1 m thick sequence of lacustrine deposits overlaying coarser chaotic material. 210Pb and 137Cs indicate that the transition from lower to upper sequence occurred close to the time of the Tunguska Event. Pollen analysis reveals that remains of aquatic plants are abundant in the top post‐1908 sequence, but are absent in the lower pre‐1908 portion of the core. These results, including organic C, N and δ13C data, suggest that Lake Cheko formed at the time of the Tunguska Event.  相似文献   

11.
We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet–cordierite–biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure–temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This occurred as the shocked rock volume underwent post-shock expansion, forming the core of the central uplift, and was followed by variable textural re-equilibration. This study thus provides a microtextural and mineralogical perspective of the shock regime within confined crust immediately prior to and during central uplift formation.  相似文献   

12.
In a provocative paper Gasperini et al. (2007) suggest that Lake Cheko, a ~300‐m‐wide lake situated a few kilometres downrange from the assumed epicentre of the 1908 Tunguska event, is an impact crater. In this response, we present several lines of observational evidence that contradicts the impact hypothesis for the lake’s origin: un‐crater‐like aspects of the lake morphology, the lack of impactor material in and around the lake, and the presence of apparently unaffected mature trees close to the lake. We also show that a tensile strength of 10–40 MPa is required for an asteroid fragment to traverse the Earth’s atmosphere and reach the surface intact and with sufficient velocity to excavate a crater the size of Lake Cheko. Inferred tensile strengths of large stony meteorites during atmospheric disruption are 10–100 times lower. We therefore conclude that Lake Cheko is highly unlikely to be an impact crater.  相似文献   

13.
本文从拉长石晕彩色的空间分布特征研究出发,采用显微镜观察、粉晶X射线衍射及电子探针分析等手段,查明了拉长石不同晕彩区域的结构和成分特征,建立了晕彩拉长石的晕彩色与成分之间的耦合关系,并对拉长石晕彩成因进行了有效的约束。研究结果表明,拉长石的晕彩色是由层状结构对光的干涉所致,其结构单元层由贫钙和富钙两相长石共同组成,当结构层厚度处于128~292nm之间时出现可见光范围内的干涉色,但结构层表面并不绝对平坦,因而出现了有如地形图中等高线似的干涉色。结构层厚度与钙含量有关,随着钙含量的增加,结构层相应地增厚,晕彩色波长也随之增大。但由于产地和结晶环境的不同,干涉色相同的拉长石钙含量不一定相等,但对于同一产地的拉长石而言,干涉色波长与钙含量呈正相关关系。  相似文献   

14.
A natural shockwave event led to the formation of a new crystalline polymorph of carbon in gneisses from the Popigai crater, Russia. The new species occupies the interior of a multiphase assemblage and is entirely enveloped by lonsdaleite and graphite. Polishing hardness of this new phase is greater than that of lonsdaleite. Micro-beam synchrotron X-ray diffraction, imaging and fluorescence studies revealed a pure transparent carbon phase. The diffraction pattern is indexed in terms of a cubic cell (a=14.697 Å, space group Pm3m.). This species was neither encountered in static or dynamic high-pressure experiment nor predicted by theoretical calculations. To cite this article: A. El Goresy et al., C. R. Geoscience 335 (2003).  相似文献   

15.
The 100±12 m.y., 25 km diameter Boltysh impact crater was formed in Precambrian granites and granite gneisses of the Ukrainian Shield. The crater deposits have undergone minimal post-impact erosion and it is possible to study a complete vertical section of the underlying 200 m thick melt sheet. The melt rocks, as sampled in two drill holes, can be subdivided into two major textural classes: microcrystalline and glassy. The microcrystalline melt rocks form an uppermost and two lowermost units, with the glassy variety occupying the middle of the melt sheet. The microcrystalline units contain 25% zoned plagioclase phenocrysts set in a microcrystalline matrix of intergrown alkali feldspar and quartz. Pyroxene has been replaced by sheet-silicates. Mineral and lithic clasts make up 5–15% and show varying degrees of shock and resorption. The glassy melt rocks are characterized by 10–30% zoned plagioclase and 5–10% orthopyroxene set in a fresh to partially devitrified glassy matrix. Clast content is <5%. Chemically, the melt rocks are relatively homogeneous and correspond to a mixture of Kirovograd granites and gneisses in the ratio of 5 to 1, with Ni, Ir and Cr showing slight enrichments over the target rocks. There are minor differences in the Fe2O3/FeO ratio and the alkalis between the microcrystalline and glassy varieties. The increase in matrix crystallinity at the upper and lower contacts is contrary to observations at other impact melt sheets, where greater matrix crystallinity occurs in the interiors of the melt sheets. One possible explanation is that the melt matrix was originally glassy throughout, due to its high SiO2 content, and the microcrystalline matrix is the result of extensive devitrification involving minor alkali exchange with circulating ground-waters.Contribution from the Geological Survey of Canada 40986  相似文献   

16.
岳宗玉  邸凯昌  张平 《地学前缘》2012,19(6):110-117
数值模拟是研究撞击坑形成过程的一种主要方法,尤其是认识撞击坑形成机制的重要手段。撞击坑形成过程数值模拟的基本原理是用离散方法描述物质在高速撞击作用下的运动及状态,在模拟中首先将物质与空间划分成离散的网格,在每一次迭代计算中逐步求解各个网格的形变、运动与状态改变的规律。牛顿运动定律、物质的连续体模型与热力学方程是撞击坑形成过程数值模拟的理论基础,牛顿运动定律以偏微分方程的形式贯穿在离散化的网格空间中,物质的连续体模型将物质的屈服强度与破裂、温度、孔隙、振动等联系起来,而热力学方程则通过其他热力学参数计算网格单元内物质的压强与物质所处的状态。  相似文献   

17.
Accessory minerals with so-called granular texture have risen in importance as geochronological tools for U-Pb dating of meteorite impact events. Grain-scale recrystallization, typically triggered by a combination of high-strain deformation and post-impact heating, can create a polycrystalline microstructure consisting of neoblasts that expel radiogenic Pb, which are thus ideal for isotopic dating. While granular domains in zircon and monazite from shocked rocks have been demonstrated to preserve impact ages, few U-Pb dating studies have been conducted on granular microstructures in titanite (CaTiSiO5). Here we report the occurrence of granular-textured titanite from ~2020 Ma granite basement rock exposed in the rim of the 4–5 Ma Roter Kamm impact structure in Namibia. Orientation mapping reveals two microstructurally distinct titanite populations: one consisting of strained/deformed grains, and the other consisting of grains that comprise aggregates of strain-free neoblasts. In situ U-Pb geochronology on 37 grains shows that most grains from both titanite populations yield indistinguishable U-Pb dates of ca. 1025 Ma, consistent with the observed microstructures forming during the Mesoproterozoic Namaqua Orogeny. Only four grains preserved older age domains, recording ca. 1875 Ma Paleoproterozoic metamorphism. Two significant observations emerge: (1) none of the analyzed titanite grains yield the 2020 Ma igneous crystallization age previously established from zircon in the same sample, and (2) no age-resetting was detected that could be attributed to the 4 to 5 Ma Roter Kamm impact event. Despite the similarity of the neoblastic microstructure to minerals from other sites with an established impact provenance, the granular texture and near-complete Pb-loss in titanite from Roter Kamm granite instead records a Paleo- to Mesoproterozoic polymetamorphic history, rather than Miocene age shock-related processes. These results highlight the critical importance of grain-scale context for interpretation of U-Pb data in granular titanite, and the potential for misinterpreting inherited (pre-impact) microstructures as impact-related phenomenon in target rocks with a complex geological history.  相似文献   

18.
In the suevite breccia of the Ries impact crater, Germany, glasses occur as bombs, and small particles in the groundmass. These glasses were formed from melt produced by shock fusion of crystalline basement rocks. Ejection from the crater resulted in the formation of aerodynamically shaped bombs, a few homogeneous spherules and a large mass of small glass particles which were deposited in the suevite breccia. Bombs and small particles included within chilled bottom and top layers of suevite deposits have been preserved in vitreous state, whereas glasses within the interior of the suevite devitrified, due to slower cooling rates.This paper summarizes the results of petrographical and chemical investigations of suevite glasses and their devitrification products. Conclusions are derived on origin and history of bombs and glass particles.Vitreous bombs and glass particles consist of schlieren-rich glass, mineral fragments (mainly quartz), rock fragments and vesicles. Wet chemical, trace element and microprobe analyses reveal that a primary melt was formed by shock fusion of a basement complex, consisting of about 80% biotite granite and 20% amphibolite. The, originally, more than 1800° C hot melt then incorporated shocked and desintegrated rocks of outer zones of the impact. Partial fusion of the rock debris resulted in a polyphase mixture consisting of melts, different in composition, accumulations of refractory mineral fragments and vesicles.Devitrified bombs and glass particles which are found in the interior of suevite deposits show alterations of texture and composition, due to microcrystallite growth and action of hydrothermal and weathering solutions. Incipient devitrification is indicated by brown staining of the glasses, originating, probably, by exsolution of minute magnetite particles. By optical microscopy and X-ray analysis, plagioclase and pyroxenes have been identified as main devitrification products. Shapes and textures of microcrystallites indicate fast crystal growth in a viscous and supercooled medium. Hot fluids permeating the suevite deposited microcrystalline quartz in vesicles and cracks. Later, montmorillonite was precipitated by solutions corroding the glass. Action of solutions on glasses which were weakened in coherence by devitrification resulted in oxidation of iron, leaching of iron and magnesium, and enrichment in alkalis.  相似文献   

19.
Using orbital imaging radar, we detected a double circular structure, located in the southeastern part of the Libyan Desert, which is partially hidden under sandy sediments. Fieldwork confirmed it to be an unknown double impact crater, each crater having a diameter of about 10 km, younger than 140 Ma. Sampling on the site enabled the observation of quantities of shatter cone structures and impact breccias containing planar fractures. To cite this article: P. Paillou et al., C. R. Geoscience 335 (2003).  相似文献   

20.
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; NiIr and NiOs ~ 11 × C1 and are much higher than any chondritic ratios; SeNi ~ 2 × C1 and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号