首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Yinyan porphyry tin deposit is a blind deposit associated with a small granite porphyry stock.The petrology and geochemistry of the Yinyan granite porphyry suggest that it is genetically of the transfor-mation type,emplaced at the late stage of fractional crystallization within a high-level magma chamber.Ore-forming fluids are derived predominantly from the granitic magma and they interact with the wall rocks intensely when finding their way upwards through the granite porphyry.From the lower part of the porphyry upwards the following alteration zones can be distinguished(a)slightly altered granite porphyry (with weak potash feldspathization),(b)protolithionite-quartz greisenization zone,(c)to-paz-quartz greisenization zone,(d)senicite-quartz sericitization zone,and (e)silicification zone (quartz core at the surface).Tin mineralization is related to greisenization,especially to topaz-quartz greisenization.Rock and ore-forming temperatures and oxygen fugacities are estimated,respectively.There are significant differences in many aspects between the Yinyan porphyry tin deposit and volcan-ic-subvolcanic porphyry tin deposits.  相似文献   

3.
4.
The accessory minerals apatite and sphene are the main carriers of REE in alkaline rocks.Their chondrite-normalized REE patterns decline sharply to the right as those of the host rocks,In the patterns an obvious negative Eu anomaly and a positive Ce anomaly can be seen in apatite and sphene,respectively.Zircon from alkaline rocks is different in REE pattern,I,e,. a nearly symmetric“V“-shaped pattern with a maximum negative Eu anomaly.Compared with the equivalents from granites,apatite,sphene and zircon from alkaline rocks are all characterized by higher (La/Yb)N ratio and less Eu depletion,As to the relative contents of REE in minerals,apatite,sphene and zircon are enriched in LREE,MREE and HREE respectively,depending on their crystallochemical properties.  相似文献   

5.
The Wurinitu molybdenum deposit, located in Honggor, Sonid Left Banner of Inner Mongolia, China, is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.?The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin’aobao Formation.?LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,?one were formed at 181.7±7.?4 Ma and?the other at 133.6±3.3 Ma. The latter age is believed to be the formation age of the fine-grained granite, while the former may reflect the age of inherited zircons, based on the morphological study of the zircon and regional geological setting. The Re-Os model age of molybdenite is 142.2±2.5?Ma, which is older than the diagenetic age of the fine-grained granite.?Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be?nearly 133.6±3.3 Ma or slightly later, i.e., Early Cretaceous.?Combined with regional geological background research, it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt, belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk?Sea.  相似文献   

6.
In accordance with the terms global minerogenic series, regional metallogenic series and ore depositsystem which are put forward here, metallogenic environments at different levels are discussed for theporphyry copper deposit series in China. It is considered that the porphyry copper deposits in China arecontrolled not only by the boundaries of convergent plates but, more importantly, by the boundaries ofintraplate divergent mobile belts and those between continental blocks. Besides, the emplacement ofhypabyssal and supper-hypabyssal calc-alkaline magmas and the temporal-spatial distribution of China'sporphyry copper deposits are governed by the superimposition of fracture systems of the pre-Alpine base-ments. Meso-Cenozoic cover and continental-margin new-born crust. Such a superimposition has also re-sulted in the polycyclicity of the mineralization.  相似文献   

7.
The Zhou’an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou’an ultramafic complex is ferruginous, with m/f?=?4.79–5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high 87Sr/86Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5?±?3.7 Ma.  相似文献   

8.
The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age.  相似文献   

9.
Geochemical characteristics of the Chagande’ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande’ersi molybdenum deposit consist mainly of medium-to fine-grained monzogranite,medium-to fine-grained rich-K granite,with minor fine-grained K-feldspar granite veins and quartz veins.The rocks are characterized by high silica,rich alkali,high potassium,which are favorable factors for molybdenum mineralization.The rocks have the Rittmann index ranging from 1.329 to 1.961,an average Na2O+K2O value of 7.41,and Al2O3/(CaO+Na2O+K2O)>1,suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite.The typical rock samples are enriched in Rb,Th,K and light rare earth elements,depleted in Sr,Ba,Nb,P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins.TheδEu of the rocks falls the zone between the crust granite and crust-mantle granite,and are close to that of the crust granite;(La/Lu)N indicates the formation environment of granite is a continental margin setting.The Nb/Ta ratios are close to that of the average crust(10);the Zr/Hf ratios of monzogranite are partly below the mean mantle(34-60),while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust.Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision.During the plate collision and orogeny,the crust and mantle material were mixed physically,remelting into lava and then crystal fractionation,finally gave rise to the formation of the rock body in this area.This has close spatial and temporal relation with the molybdenum mineralization.  相似文献   

10.
11.
12.
正Objective As the third most important copper polymetallic metallogenic belt in Tibet,the Bangongco–Nujiang metallogenic belt(BNMB)has attracted much attention among geoscientists all over the world(Lin Bin et al.,2017a).There are two ore clusters in the western of BNMB,the Duolong giant porphyry-epithermal Cu(Au,Ag)ore cluster and the Ga’erqiong–Galalelarge porphyry-  相似文献   

13.
In the year of 2011, a super-large molybdenum deposit was discovered in the Shapinggou area, Jinzhai county, Anhui Province by the Bureau of Geology and Mineral Exploration of Anhui Province, with its reserve more than 2.2 million ton, just next to the Klimax molybdenum deposit (>3.3 million ton) in Colorado. It has ranged the world’s second largest molybdenum deposit, with potential economic value up to 100 billion dollars. Geological surveys suggest orebodies from the Shapinggou porphyry molybdenum deposit extend 1000 m long by up to 900 m wide. A drillhole intersects one orebody as thick as 945 m, with 0.2 wt% Mo. This entire deposit suggests 332+333 ore reserve as 1.275 billion ton and Mo metal reserve as 2 million ton; this does not include the reserves of the east-west ends. Based on the current exploration work, a total Mo metal reserve of 2.2 million ton can be accomplished. The Shapinggou molybdenum deposit is characterized by its large scale, high grade, concentrated orebodies and high economic value. The Shapinggou porphyry molybdenum deposit is the largest metal deposits during the 50 years’ prospecting history in Anhui Province. Its discovery rewrites China’s history of “no large-scale deposit in the eastern Dabie Mountains”, and validates that the Qinling-Dabie orogenic belt is the most significant Au-Mo metallogenic belt.  相似文献   

14.
On l lth September 2013, the Inner Mongolia Mineral Resources and Reserves Evaluation Center estimated that the world's third-largest molybdenum deposit had been found in the Caosiyao area of Xinghe County, Inner Mongolia, NE China. The find has 130235.60×10^4 t of (122b)+(333) molybdenum ores, a metal amount of 1327649.27 t, with Mo grade of 0.102-a super-large one.  相似文献   

15.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

16.
The Wuxi gold deposit is located in Langqiao town, Jingxian county in South Anhui province, which is situated in the Jiangnan orogen, between the Middle and Lower Yangtze polymetallic metallogenic belt and South China metallogenic belt. The LA-ICP-MS dating results for zircons from the drill samples and outcrop rock in ore-bearing granite porphyry are consistent, 139.6±1.7 Ma(ZK7301), 137.3±1.6 Ma(ZK7001), 137.3±1.1 Ma (10WX-1), respectively. This intrusion is controlled by fault structure, and slightly contaminated by the early Archean crustal material. The developed cryptoexplosive breccia and mineralized breccia indicated the Wuxi orebody and granite porphyry were formed contemporaneously. The Wuxi granite porphyry is characterized by peraluminous, enriched in LILE (large ion lithophile elements), depleted in HFSE (high field strength elements) and heavy rare earth elements, significant differentiation between LREE and HREE, slight Eu negative anomaly. The apatite from the Wuxi granite porphyry has similar REE characteristics with those of the Yangtze series, indicating it was affected by mantle derived magmatic fluid activities; and the high δEu value of the apatite implies open tectonic environment and high oxygen fugacity during magma evolution. Zircon oxygen fugacity calculation indicates the granite porphyry formed in a high oxygen fugacity condition, thus it is conducive for precipitation and mineralization of Cu, Au and other ore-forming elements. While the formation of the Wuxi granite porphyry was closely related to the subduction and collision of the Paleo-pacific plate. The developed faults in the deposit provided channels for ore-forming fluid migration, which is conducive to the mineralization. Further prospecting and geochemical work are necessary for the area. ©, 2015, Science Press. All right reserved.  相似文献   

17.
18.
(U-Th)/He dating is a newly developed low temperature thermochronometry,and it elaborately reflects cooling history of geologic body under low temperature.It can be applied to analyze thermal evolution of the sedimentary basin,combining with vitrinite reflectance and fission track.(U-Th)/He dating of apatite and zircon from drilling cores in Puguang (普光)-Maoba (毛坝) area and outcrops in Tongjiang (通江) area indicates that the Northeast Sichuan (四川) basin underwent great uplift and denudation during the Tertiary and the Quaternary.During the period,denudation rates changed from 74.8 to 172.5 m/Ma and denudation thickness was between 2 800 and 3 000 m,geotemperature gradually declined into the current temperature,passing through helium closure temperature of apatite.The uplift and denudation relate to new tectonic movement response in the Sichuan basin aroused by the Qinghai (青海)-Tibet plateau.Drilling samples above 4 000 m did not undergo closure temperature of zircon,but the samples nearly 4 000 m might approach closure temperature of zircon and all the samples underwent closure temperature of apatite.According to (U-Th)/He ages of zircon,it is concluded that the Northeast Sichuan basin began to uplift in the Late Jurassic.From the Late Jurassic to the Paleogene,Northeast Sichuan basin was in slow uplift and denudation,but the denudation of Puguang-Maoba area was earlier than that of Tongjiang area.(U-Th)/He ages of zircon indicate the denudation time of provenance areas.On the basis of paleodrainage characteristics,provenance transport and other related data,provenance areas of the clastic rocks are decided,which is worthy to be investigated further.  相似文献   

19.
The Tashan porphyry tin polymetallic deposit is located at the southwest part of the Lianhuashan Fault in the eastern Guangdong province. It is one of the three typical porphyry tin deposits in China. In this paper, we reported cassiterite and zircon U-Pb ages, geochemistry and Lu-Hf isotopes of the ore-bearing granite porphyry in the orefield. Zircon LA-ICP-MS U-Pb dating yielded a concordant ages of 136.8±1.1 Ma, whereas analyses of cassiterite yielded a 206Pb/238U-207Pb/238U concordia lower intercept age of 133.6±8.6 Ma and a Tera-Wasserburg lower intercept age of 136.5±8.1 Ma, which suggest a genetic link between the granite porphyry and the ore mineralization. The εHf(t) values of -4.87 to -2.07 and tDM2 ages 1322 Ma to 1507 Ma for zircon from the granite porphyry show that the Tashan granite porphyry was likely derived from partial melting of the Mesoproterozoic crustal rocks with minor input of mantle material. © 2018, Science Press. All right reserved.  相似文献   

20.
Geology of Ore Deposits - Abstract—This paper focuses on new data for palladium-bearing mineral phases in the ores of the Malmyzh porphyry gold–copper deposit situated approximately 220...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号