首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have carried out a sensitive high-latitude (|b| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3σ detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V1sr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s−1 and 21 ± 4 km s−1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm−2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4) × 1019 cm−2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.  相似文献   

2.
Only in recent years has the realization emerged that galaxies do not dominate the universal baryon budget but are merely the brightest pearls of an underlying cosmic web. Although the gas in these inter-galactic filaments is moderately to highly ionized, QSO absorption lines have shown that the surface area increases dramatically in going down to lower HI column densities. The first image of the cosmic web in HI emission has just been made of the Local Group filament connecting M31 and M33. The corresponding HI distribution function is in very good agreement with that of the QSO absorption lines, confirming the 30-fold increase in surface area expected between 1019 and 1017 cm−2. The critical observational challenge is crossing the “HI desert”, the range of log(NHI) from about 19.5 down to 18, over which photo-ionization by the intergalactic radiation field produces an exponential decline in the neutral fraction from essentially unity down to a few percent. Nature is kinder again to the HI observer below log(NHI) = 18, where the neutral fraction decreases only very slowly with log(NHI). With the SKA, we can begin the systematic study of the cosmic web beyond the Local Group. With moderate integration times, the necessary resolution and sensitivity can be achieved out to distances beyond the Virgo cluster. When combined with targeted optical and UV absorption line observations, the total baryonic masses and enrichment histories of the cosmic web will be determined over the complete range of environmental over-densities.  相似文献   

3.
The gas properties of barred and unbarred spiral galaxies are compared in two complete samples. It is found that two types of spiral galaxies do not differ from each other in atomic and molecular gas contents. On average there is 6 times more HI than H2 in spiral galaxies and the ratio MH2/MHI decreases from early to late types. The barred and unbarred spirals in general show a similar behaviors of the gas-to-luminosity relationships, but also there are certain differences between them such as correlation of two gas phases (HI and H2)for unbarred galaxies. It is suggested that different behaviors of two types galaxies are due to the higher star forming activity of barred with respect unbarred spirals. The expected values of HI and H2 gas contents have been estimated using blue and far-infrared emission. Published in Astrofizika, Vol. 43, No. 3, pp. 405-410, July–September, 2000.  相似文献   

4.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

5.
We review observational constraints on the structures responsible for extreme scattering events, focussing on a series of observations of the quasar PKS 1741–038. VLA observations were conducted to search for changes in the rotation measure and HI absorption during the ESE, while VLBI observations sought ESE-induced changes in the source's image. No RM changes were found implying B < 12 mG, and no HI opacity changes were found implying N(HI) < 6.4 × 1017cm-2. No multiple imaging was observed, but the diameter of the source increased by 0.7 mas, contrary to what is predicted by simple refractive lens modeling of ESEs. We summarize what these limits imply about the structure responsible for this ESE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

7.
We investigate the possibility of probing the large scale structure in the universe at large redshifts by studying fluctuations in the redshifted 1420 MHz emission from the neutral hydrogen (HI) at early epochs. The neutral hydrogen content of the universe is known from absorption studies forz ≲ 4.5. TheHI distribution is expected to be inhomogeneous in the gravitational instability picture and this inhomogeneity leads to anisotropy in the redshifted HI emission. The best hope of detecting this anisotropy is by using a large low-frequency interferometric instrument like the Giant Meter-Wave Radio Telescope (GMRT). We calculate the visibility correlation function 〈Vv(U) Vv′(U)〉 at two frequenciesi andv′ of the redshiftedHI emission for an interferometric observation. In particular we give numerical results for the two GMRT channels centered aroundν = 325 MHz andν = 610 MHz from density inhomogeneity and peculiar velocity of the HI distribution. The visibility correlation is- 10-10-10-9 Jy2. We calculate the signal-to-noise for detecting the correlation signal in the presence of system noise and show that the GMRT might detect the signal for integration times - 100 hrs. We argue that the measurement of visibility correlation allows optimal use of the uncorrelated nature of the system noise across baselines and frequency channels. On leave from Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India.  相似文献   

8.
The atomic and molecular hydrogen gas properties of a complete sample of Markarian galaxies with flux density at 60 µm higher than 1.95 Jy are presented. We present the improved far-infrared luminosity function of Markarian galaxies; and its comparison with other samples. We find that 40% of the bright IRAS galaxies of far-infrared luminosity higher than 1010.5 L are Markarian galaxies. There is an absence of correlation between HI content of Markarian galaxies and current star formation activity, implying that star formation in these systems has complex structure and it is not a simple function of the HI content. On the contrary, the H2 content of Markarian galaxies is well correlated with star formation activity. It is argued that tight correlation between HI and H2 contents is a consequence of transformation of atomic hydrogen into molecular.Published in Astrofizika, Vol. 38, No. 4, pp. 636–644, October–December, 1995.  相似文献   

9.
We processed the data on radial velocities and HI line widths for 1678 flat edge-on spirals from the Revised Flat Galaxy Catalogue. We obtained the parameters of the multipole components of the large-scale velocity field of collective non-Hubble galaxy motion as well as the parameters of the generalized Tully–Fisher relation in the “HI line width—linear diameter” version. All the calculations were performed independently in the framework of three models, where the multipole decomposition of the galaxy velocity field was limited to a dipole, a quadrupole, and an octopole term. We showed that both the quadrupole and the octopole components are statistically significant. On the basis of the compiled list of peculiar velocities of 1623 galaxies we obtained estimations of cosmological parameters Ω m and σ 8. These estimations were obtained in both graphical form and as a constraint of the value S 8=(Ω m /0.3)0.35 σ 8=0.91±0.05.  相似文献   

10.
Observations of neutral hydrogen in spiral galaxies reveal a sharp cutoff in the radial density profile at some distance from the center. Using 22 galaxies with known HI distributions as an example, we discuss the question of whether this effect can be associated exclusively with external ionizing radiation, as is commonly assumed. We show that before the surface density reaches δ HI ≤ 0.5 M pc−2 (the same for galaxies of different types), it is hard to expect the gas to be fully ionized by background radiation. For two of 13 galaxies with a sharp drop in the HI profile, the “steepening” can actually be caused by ionization. At the same time, for the remaining galaxies, the observed cutoff in the radial HI profile is closer to the center than if it was a consequence of ionization by background radiation and, therefore, it should be caused by other factors.  相似文献   

11.
Observations of the redshifted 21-cm HI fluctuations promise to be an important probe of the post-reionization era (z≤ 6). In this paper we calculate the expected signal and foregrounds for the upgraded Ooty Radio Telescope (ORT) which operates at frequency ν o = 326.5 MHz which corresponds to redshift z = 3.35. Assuming that the visibilities contain only the HI signal and system noise, we show that a 3 σ detection of the HI signal (~1 mK) is possible at angular scales 11 to 3° with ≈1000 h of observation. Foreground removal is one of the major challenges for a statistical detection of the redshifted 21 cm HI signal. We assess the contribution of different foregrounds and find that the 326.5 MHz sky is dominated by the extragalactic point sources at the angular scales of our interest. The expected total foregrounds are 104?105 times higher than the HI signal.  相似文献   

12.
It is pointed out that, when calculating the continuous absorption coefficient in a stellar atmosphere, it is advantageous to use the coefficient per particle of the most abundant element instead of the usual coefficient per gram of matter. The sources of continuous opacity considered are 1) absorption by H-, HI, H2-, H 2+, HeI, HeII, CI, CII, CIII, NI, NII, OI, OII, NaI, MgI, MgII, AlI, AlII, SiI, SiII, ClI, KI, CaII; and 2) Rayleigh scattering by HI, HeI, CI, NI, OI, H2, and 3) Thomson scattering of free electrons. The calculations are illustrated by the results for a solar-type photosphere.  相似文献   

13.
The gas properties of barred and unbarredspiral galaxies are compared in two complete samples.It is found that two types of spiral galaxies do notdiffer to each other in atomic and molecular gascontents. On average there is 6 times more HI thanH2 in spiral galaxies and the ratio MHI/MH2decreases from early to late types. The barred andunbarred spirals in general show a similar behaviorsof the gas-to-luminosity relationships, but also thereare certain differences between them such ascorrelation of two gas phases (HI and H2) forunbarred galaxies. It is suggested that differentbehaviors of two types galaxies are due to the higherstar forming activity of barred with respect unbarredspirals. The expected values of HI and H2 gascontents have been estimated using blue and far-infrared emission.  相似文献   

14.
The Eridanus galaxies follow the well-known radio—FIR correlation. The majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies that have a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (L 20cm > 1023 W Hz−1) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (L 20cm ∼ 1022 W Hz−1) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.  相似文献   

15.
Observations are presented of the isolated dwarf irregular galaxy And IV made with the Hubble Space Telescope Advanced Camera for Surveys and the Giant Metrewave Radio Telescope in the 21 cm HI line. We determine the galaxy distance of 7.17 ± 0.31 Mpc using the Tip of Red Giant Branch method. The galaxy has a total blue absolute magnitude of –12.81 mag, linear Holmberg diameter of 1.88 kpc, and an HI ‐disk extending to 8.4 times the optical Holmberg radius. The HI massto‐blue luminosity ratio for And IV amounts 12.9 M/L. From the GMRT data we derive the rotation curve for the HI and fit it with different mass models. We find that the data are significantly better fit with an iso‐thermal dark matter halo, than by an NFW halo. We also find that MOND rotation curve provides a very poor fit to the data. The fact that the isothermal dark matter halo provides the best fit to the data supports models in which star formation feedback results in the formation of a dark matter core in dwarf galaxies. The total mass‐to‐blue luminosity ratio of 162 M/L makes And IV among the darkest dIrr galaxies known. However, its baryonic‐to‐dark mass ratio (Mgas + M *)/MT = 0.11 is close to the average cosmic baryon fraction of 0.15. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The correlations between the plasma characteristics of the solar wind flow in the vicinity (± 12 hr) of stream-free sector boundaries near Earth are examined using the composite data base of interplanetary plasma for the period 1965–1980. We confirm the result of Lopez et al. (1986) of an inverse relationship of the proton temperature (T p) with the momentum flux density (NV 2) in the low speed wind at 1 AU. The coefficients of lines of best fit to the T pvs NV 2(as well as T pvs V) distribution in our sample are, however, significantly different from those of the undifferentiated sample of low speed wind considered by Lopez et al. such that T pis, in general, lower than expected. We find further that the proton number density (N) varies as the inverse cube of the flow speed (V) indicating an invariance of the kinetic energy flux density (NV 3) relative to velocity structure in the plasma flow around stream-free boundaries. These average relationships, which are unaffected by interplanetary dynamical processes, are suggested to be due to sub-sonic addition of momentum and energy to the solar wind flow from the source structures, namely coronal streamers.  相似文献   

17.
Cross correlations between observed and synthetic spectra are used to discover yet another satellite of BM Ori with the following characteristics: effective temperature Teff = 4000 K, radius R = 16R, mass M = 1.8M, spectral type K7 III, absolute bolometric stellar magnitude Mb = + 4m·0, axial rotation velocity V sini = 85 km/s, and relative luminosity 0.005 near the V band. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 111–120 (February 2006).  相似文献   

18.
I describe briefly the status of an ongoing mini-survey for molecular hydrogen in high-redshift Damped Lyman-α systems using UVES at the VLT. H2 is detected in about 30% of the cases. When H2 is not detected the molecular fraction f = 2N(H2)/(2N(H2)+N(HI) is smaller than 10-5. Therefore, most of the DLA systems arise in warm (T > 3000 K) and diffuse neutral gas embedded in a strong UV flux. The very recent detection of HD molecules in a Damped Lyman-α system at z abs = 2.337 demonstrates the possibility to discuss the high redshift chemistry. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

19.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
The study of the variation of equivalent width in a Rayleighscattering planetary atmosphere along the intensity equator and along the mirror meridian on whichμ =μ 0 shows that the equivalent widths decrease monotonically towards the poles, the limb and the terminator with the following characteristics: (i) the weakest lines exhibit the maximum change; (ii) theI e r component shows more change than theI e r component; (iii) the decrease towards the limb or the terminator is not as sharp as that towards the poles; (iv)I e r component shows more decrease towards the limb whileI e r component shows more decrease towards the terminator; and (v) the relationW (μ, φ;μ 0,φ 0)= W (μ 0,φ 0;μ, φ) holds for the total intensity. These results are qualitatively in agreement with the observations of absorption bands in the spectra of Venus, Jupiter and Saturn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号