首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a new model for thunderstorm electric field generation which directly utilizes the dynamic turbulent motion to separate the charges. Postulating a microphysical charge separation mechanism, such as is commonly accepted in most other theories, and which places a negative charge on the larger particles with a positive charge on the smaller ones, it is described how evaporation and cooling at the tops of small cumuli will release the positive charges as ions. These ions migrate to the surrounding cloud as the cooled parcel, with negatively charged particles in it, sinks down through the cloud. Since the sinking parcel contains mostly ice, it will be more buoyant than its surroundings when it reaches rising regions of water cloud, and hence should come to rest near the –10°C level. Thus the cloud will acquire an accumulation of negative charge at about this level before substantial hydrometeors begin falling out of it.  相似文献   

2.
Ground water is a vital, but underappreciated, natural resource in the Great Lakes basin. It meets many human needs and contributes significantly to the hydrology of the Great Lakes and the health of ecosystems. This paper provides an overview of ground water in the Great Lakes and the institutional and legal setting that governs the use, protection, diversion, and removal of water from the basin and proposes a citizen-centered vision for management of ground water in the 21st century.  相似文献   

3.
Cannon  David  Fujisaki-Manome  Ayumi  Wang  Jia  Kessler  James  Chu  Philip 《Ocean Dynamics》2023,73(3-4):201-218
Ocean Dynamics - The world’s largest lakes, including the Laurentian Great Lakes, have experienced significant surface warming and loss of ice cover over the last several decades. Although...  相似文献   

4.
A numerical model of ice phase growth in an ascending parcel is used to delineate seeding requirements under the competing embryo and glaciation hypotheses. The strong updraft core is found to remain virtually all liquid until homogeneous freezing occurs, AgI or dry ice seeding having negligible effects with achievable seeding rates. This suggests that the glaciation hypothesis is untenable. Natural hail embryo formation is noted to be limited to updrafts less than 3 to 4 m sec?1 at cloud base. AgI seeding of such updraft regions at rates currently used is found to produce concentrations of hail embryos sufficient to enhance competition in multi-cell hailstorms, although super-cell storms may require significantly greater seeding rates.  相似文献   

5.
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes‐St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.  相似文献   

6.
Data from several coincident satellite sensors are analyzed to determine the dependence of cloud and precipitation characteristics of tropical regions on the variance in the water vapor field. Increased vapor variance is associated with decreased high cloud fraction and an enhancement of low-level radiative cooling in dry regions of the domain. The result is found across a range of sea surface temperatures and rain rates. This suggests the possibility of an enhanced low-level circulation feeding the moist convecting areas when vapor variance is large. These findings are consistent with idealized models of self-aggregation, in which the aggregation of convection is maintained by a combination of low-level radiative cooling in dry regions and mid-to-upper-level radiative warming in cloudy regions.  相似文献   

7.
The NOAA Great Lakes Operational Forecast System (GLOFS) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water temperature and currents, and two-dimensional forecasts of water levels of the Great Lakes. This system, originally called the Great Lakes forecasting system (GLFS), was developed at The Ohio State University and NOAA’s Great Lakes Environmental Research Laboratory (GLERL) in 1989. In 1996, a workstation version of the GLFS was ported to GLERL to generate semi-operational nowcasts and forecasts daily. In 2004, GLFS went through rigorous skill assessment and was transitioned to the National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS since September 30, 2005. Hindcast, nowcast, and forecast evaluations using the NOS-developed skill assessment software tool indicated both surface water levels and temperature predictions passed the NOS specified criteria at a majority of the validation locations with relatively low root mean square error (4–8 cm for water levels and 0.5 to 1°C for surface water temperatures). The difficulty of accurately simulating seiches generated by storms (in particular in shallow lakes like Lake Erie) remains a major source of error in water level prediction and should be addressed in future improvements of the forecast system.  相似文献   

8.
We investigated the frequency domain relationships between four atmospheric teleconnections (Trans-Niño Index TNI, Pacific Decadal Oscillation PDO, Northern Annular Mode/Arctic Oscillation Index NAM/AO, and Pacific/North American PNA pattern) and water levels in the Great Lakes from 1948 to 2002 by quantifying the coherence between these time series. The levels in all Great Lakes are significantly correlated with the TNI in the frequency range (3–7)−1 cycles year−1, and with the PDO in interdecadal frequencies. The levels in Lakes Superior, Michigan, and Erie are significantly correlated with the PNA pattern in interdecadal frequencies, and the levels in all Great Lakes are significantly correlated with the NAM/AO in interannual frequencies.  相似文献   

9.
Using constraints from an extensive database of geological and geochemical observations along with results from fluid mechanical studies of convection in magma chambers, we identify the main physical processes at work during the solidification of the 1959 Kilauea Iki lava lakes. In turn, we investigate their quantitative influence on the crystallization and chemical differentiation of the magma, and on the development of the internal structure of the lava lake. In contrast to previous studies, vigorous stirring in the magma, driven predominately by the descent of dense crystal-laden thermal plumes from the roof solidification front and the ascent of buoyant compositional plumes due to the in situ growth of olivine crystals at the floor, is predicted to have been an inevitable consequence of very strong cooling at the roof and floor. The flow is expected to have caused extensive but imperfect mixing over most of the cooling history of the magma, producing minor compositional stratification at the roof and thermal stratification at the floor. The efficient stirring of the large roof cooling is expected to have resulted in significant internal nucleation of olivine crystals, which ultimately settled to the floor. Additional forcing due to either crystal sedimentation or the ascent of gas bubbles is not expected to have increased significantly the amount of mixing. In addition to convection in the magma, circulation driven by the convection of buoyant interstitial melt in highly permeable crystal-melt mushes forming the roof and the floor of the lava lake is envisaged to have produced a net upward flow of evolved magma from the floor during solidification. In the floor zone, mush convection may have caused the formation of axisymmetric chimneys through which evolved magma drained from deep within the floor into the overlying magma and potentially the roof. We hypothesize that the highly evolved, pipe-like ‘vertical olivine-rich bodies’ (VORBs) [Bull. Volcanol. 43 (1980) 675] observed in the floor zone, of the lake are fossil chimneys. In the roof zone, buoyant residual liquid both produced at the roof solidification front and gained from the floor as a result of incomplete convective mixing is envisaged to have percolated or ‘leaked‘ into the overlying highly-permeable cumulate, displacing less buoyant interstitial melt downward. The results from Rayleigh fractionation-type models formulated using boundary conditions based on a quantitative understanding of the convection in the magma indicate that most of the incompatible element variation over the height of the lake can be explained as a consequence of a combination of crystal settling and the extensive but imperfect convective mixing of buoyant residual liquid released from the floor solidification front. The remaining chemical variation is understood in terms of the additional influences of mush convection in the roof and floor on the vertical distribution of incompatible elements. Although cooling was concentrated at the roof of the lake, the floor zone is found to be thicker than the roof zone, implying that it grew more quickly. The large growth rate of the floor is explained as a consequence of a combination of the substantial sedimentation of olivine crystals and more rapid in situ crystallization due to both a higher liquidus temperature and enhanced cooling resulting from imperfect thermal and chemical mixing.  相似文献   

10.
Contrary to general international perception, Canada does not have an unlimited supply of freshwater. However, because Canada has a small population, it does have a generous water allocation on a per capita basis. Nor is Canada immune from water quality problems:its cold continental climate, urbanization and industrial activities all contribute to water quality concerns and deterioration. Generally, the authority to manage water in Canada is held by the country''s provincial governments. The Great Lakes basin is the world''s largest freshwater ecosystem and is located in Canada''s industrial heartland. Water issues, starting with phosphorus in the 1960''s, created international headlines. In the 1970''s toxics became the predominant issue and this led to the Great Lakes Water Quality Agreement which established the ecosystem approach to water quality management. This approach is now the standard approach to water quality management and has been successfully applied to a number of other lake and river ecosystems in Canada. While there have been improvements in the water quality of the Great Lakes much remains to be done on toxic elimination and the large contaminant stores in the sediments. Atmospheric deposition has become a significant source of chemicals from outside the basin The Canadian prairies, the agricultural heartland of Canada, is one major ecozone that has not been selected to have current and potential water quality problems examined by a federal government program. Both the quantity and quality of water in this region are potentially significant factors limiting economic diversification and sustainable development in this vast and ecologically disturbed region.  相似文献   

11.
The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1–7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may increase but many complex reactions of the phytoplankton community to altered temperatures, thermocline depths, light penetrations and nutrient inputs would be expected. Zooplankton biomass would increase, but, again, many complex interactions are expected. Generally, the thermal habitat for warm-, cool- and even cold-water fishes would increase in size in deep stratified lakes, but would decrease in shallow unstratified lakes and in streams. Less dissolved oxygen below the thermocline of lakes would further degrade stratified lakes for cold water fishes. Growth and production would increase for fishes that are now in thermal environments cooler than their optimum but decrease for those that are at or above their optimum, provided they cannot move to a deeper or headwater thermal refuge. The zoogeographical boundary for fish species could move north by 500–600 km; invasions of warmer water fishes and extirpations of colder water fishes should increase. Aquatic ecosystems across the region do not necessarily exhibit coherent responses to climate changes and variability, even if they are in close proximity. Lakes, wetlands and streams respond differently, as do lakes of different depth or productivity. Differences in hydrology and the position in the hydrological flow system, in terrestrial vegetation and land use, in base climates and in the aquatic biota can all cause different responses. Climate change effects interact strongly with effects of other human-caused stresses such as eutrophication, acid precipitation, toxic chemicals and the spread of exotic organisms. Aquatic ecological systems in the region are sensitive to climate change and variation. Assessments of these potential effects are in an early stage and contain many uncertainties in the models and properties of aquatic ecological systems and of the climate system. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Michigan basin regional ground water flow discharge to three Great Lakes   总被引:1,自引:1,他引:0  
Ground water discharge to the Great Lakes around the Lower Peninsula of Michigan is primarily from recharge in riparian basins and proximal upland areas that are especially important to the northern half of the Lake Michigan shoreline. A steady-state finite-difference model was developed to simulate ground water flow in four regional aquifers in Michigan's Lower Peninsula: the Glaciofluvial, Saginaw, Parma-Bayport, and Marshall aquifers interlayered with the Till/"red beds," Saginaw, and Michigan confining units, respectively. The model domain was laterally bound by a continuous specified-head boundary, formed from lakes Michigan, Huron, St. Clair, and Erie, with the St. Clair and Detroit River connecting channels. The model was developed to quantify regional ground water flow in the aquifer systems using independently determined recharge estimates. According to the flow model, local stream stages and discharges account for 95% of the overall model water budget; only 50% enters the lakes directly from the ground water system. Direct ground water discharge to the Great Lakes' shorelines was calculated at 36 m3/sec, accounting for 5% of the overall model water budget. Lowland areas contribute far less ground water discharge to the Great Lakes than upland areas. The model indicates that Saginaw Bay receives only approximately 1.13 m3/sec ground water; the southern half of the Lake Michigan shoreline receives only approximately 2.83 m3/sec. In contrast, the northern half of the Lake Michigan shoreline receives more than 17 m3/sec from upland areas.  相似文献   

13.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   

14.
Exotic species introductions to the North American Great Lakes have continued even though ballast water management strategies were implemented in the early 1990s. Overseas vessels that arrive with little or no exchangeable ballast on board have been suspected to be an important source for discharging low salinity ballast containing low salinity tolerant organisms in this region. Residual ballast averaged 18.1+/-13.4 per thousand salinity among 62 samples taken primarily from bottom tanks on 26 vessels that entered the Great Lakes in 1999 and 2000. Sampling of 2-4 tanks each on nine vessels indicated all carried at least one tank of residual ballast of 相似文献   

15.
湿饱和流中的Richardson数和不稳定的研究   总被引:7,自引:1,他引:6       下载免费PDF全文
本文推导了干、湿饱和流中的Ri数方程.选取华北的一次降水过程,利用模式输出资料计算并对比分析干空气、湿饱和流中Ri方程中的各项,发现干过程中水平风速的垂直切变对干Ri数的变化和不稳定的影响占主导地位,而在湿过程中,湿饱和Ri的分子(Brunt_Vaisala frequency, 简称BVF)对Ri数的变化及不稳定的影响可达到与分母相当的量级. 既然BVF在湿过程中对不稳定有非常重要的影响,我们寻找了更符合湿过程中实际情况的BVF表达式,以对Ri进行修正,从而更好地判断湿过程的不稳定.研究发现,由于考虑了气块的虚温效应和总的水物质混合比的变化,即考虑降水过程中部分液态水脱离气块,有效地减小了雨区的稳定性,使得修正后的湿Ri公式可能更适合于诊断雨区的不稳定.  相似文献   

16.
Water and salt transfer coupled with phase change may cause serious damage to engineering structures in saline soil regions. In this study, the migration of water and salt in silty clay collected from the Qinghai‐Tibet Plateau is explored experimentally and numerically during freezing and thawing processes. The results revealed that there are significant differences in the variations of liquid water content and solution concentration for different initial salt contents, due to salt crystallization and dissolution. The temperature‐induced water migration is determined by the soil properties, which can be well explained by the thermodynamics of mass transfer. The amount of salt migrated upward during cooling is slightly larger than that transported downward in the warming period, implying that salt may be accumulated in the surface soil after a large number of circulations and finally result in soil salinization.  相似文献   

17.
ABSTRACT

Time series techniques were employed to determine rates of vertical crustal movement within the Great Lakes region of North America. Observations of water level elevations as recorded at gauges around the lakes, and differences in elevations between pairs of gauges were analysed for linear trends, periodicities and stochastic components. It was found that the variance of time series of elevations consisted mainly of first-order linear trends and small periodic components. Relative rates of crustal movement were computed from a linear trends analysis of elevation differences. These rates were converted to absolute rates of movement using the Nipissing zero isobase as a datum.

This study shows that, in general, the northeastern area of the Great Lakes region is rising at a rate of about 1·00 ft per 100 years relative to the southwest of the region.  相似文献   

18.
湖泊中溶解氧极大值之成因   总被引:1,自引:0,他引:1  
本文对位于台湾南部两个次高海拔湖泊-大鬼湖及万山神池进行研究,并试图探讨此二无明显进,出水口之封闭型湖泊中,水体溶解氧垂直分布出现极大值之成因,此二次高海拔湖泊地处偏远,人烟罕至,因此较不受人为干扰,为研究湖泊水体中种种自然作用的良好对象,大鬼湖平均水深约14.8m,最深处约40m,降冬季外,水体均有分层现象,1988年夏季资料显示,水深16m以下水体趋于无氧状态,且于此深度以上的溶氧饱和值,均接近当地的大气饱和值(约78%),经各种资料推断,此极大值的成因,除水团乃于春季时留下主溶氧值之外,应综合了季节增温效应下使表水向下温合的物理作用(尤其是山区明显的口,夜温差所引起的表水冷却向下混合作用,且其混合深度随季节增温而逐步变浅),消耗溶解氧的生物作用及跃层存在等影响因素,而非单纯的物理或生物作用所造成,1991年4月万山神池观测资料显示,湖水平均深度约8m,最深可达14m ,其氧饱和程序分布在80%-104%之间,表水接近近当地饱和值(78%),而于1.5m处往下增加,于2m处有溶解氧及和程度极大值,比当时大气饱合值高约20%,此极大值深度与叶绿素a极大值深度相吻合,主要由生物之光合作用造成,此外,于此深度pH值亦有明显增加现象,更证实了生物作用的存在,此二湖环境背景相似,且水泥中均出现溶氧极大值,但二者间极大值却有不同的成因,经曲两不同成因的比较,将可提供许多相关研究资料。  相似文献   

19.
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization.  相似文献   

20.
Stratospheric sudden warming events in the Northern Hemisphere of the Berlin TSM GCM are investigated. In about 50% of the simulated years (13 out of 28), major midwinter warmings occur. This agrees well with observations but, whereas real events tend to occur approximately every second season, those in the model are clustered, most of them occur in the period between years 15/16 and years 24/25. In most other years, minor warming events take place. The warming events are found earlier in the winter than in reality. Many of the observed characteristics of warming events are well captured by the model: pulses of wave activity propagate out of the troposphere; these transient events force the zonal-mean zonal wind in the stratosphere and coincide with increases of the temperature at the North Pole and cooling at low levels in the tropics; temperature changes of opposite sign are modelled at higher levels. Synoptically, the modelled stratosphere evolves quite realistically before the warmings: the cyclonic vortex is displaced from the Pole by an amplifying anticyclone. After minor warmings, the stratosphere remains too disturbed as the cyclonic centre does not return to the North Pole as quickly as in reality. In the aftermath of major warmings the cyclonic vortex is not fully eroded and the anticyclonic circulation does not develop properly over the Pole; furthermore, the wintertime circulation is not properly restored after the event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号