首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract

In the Southwestern intermountain and high plains areas, precipitation is seasonal, with the major part of the rainfall occurring in the summer. Most winter precipitation occurs as low-intensity rain or snow along slow-moving cold fronts. Most summer precipitation occurs as short-duration, high-intensity thunderstorms from purely convective buildup or from convective cells developing along a weak fast-moving cold front. Almost all runoff occurs from the summer convective storms.

Since runoff-producing precipitation is of primary interest at the Southwest Watershed Research Center, Agricultural Research Service, Tucson, Arizona, the convective storms have been most thoroughly analyzed. Duration, intensity, areal extent, movement, character, and return frequencies for varying volumes and intensities of these convective storms are analyzed from records from dense networks of recording rain gages in four study areas in Arizona and New Mexico. The primary study areas are the 58-square-mile Walnut Gulch Experimental Watershed at Tombstone, Arizona, and the 67-squaremile Alamogordo Creek Watershed near Santa Rosa, New Mexico. Three “record” storms of differing character occurring in 1960 and 1961 on Alamogordo Creek Watershed and one “record” storm in 1961 on the Wlanut Gulch Watershed are analyzed and compared in detail.  相似文献   

2.
The magnitude, frequency, and duration of erosive rainfall on bare arable soils is investigated within an area of sandy soils in east Shropshire. Rainfall parameters are compared with runoff and erosion from ten 25 m2 runoff plots, maintained in a bare condition on slopes of varying steepness. On rain-drop compacted (capped) soils measured erosion rates of ≦ 42.7t ha?1 occur during individual storms. Erosion rates increase markedly with slope and on slopes > ? 13° are largely attributable to rill erosion. Prolonged duration, low intensity events cause relatively little erosion; most is accomplished by short duration, high intensity (> 10 mm h?1) convective rainstorms. Comparison of measured erosion-producing events and long-term rainfall records indicate that potentially erosive storms are quite frequent, and are most likely to cause erosion in late spring/early summer.  相似文献   

3.
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms?? development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.  相似文献   

4.
Pre-monsoon rainfall around Kolkata (northeastern part of India) is mostly of convective origin as 80% of the seasonal rainfall is produced by Mesoscale Convective Systems (MCS). Accurate prediction of the intensity and structure of these convective cloud clusters becomes challenging, mostly because the convective clouds within these clusters are short lived and the inaccuracy in the models initial state to represent the mesoscale details of the true atmospheric state. Besides the role in observing the internal structure of the precipitating systems, Doppler Weather Radar (DWR) provides an important data source for mesoscale and microscale weather analysis and forecasting. An attempt has been made to initialize the storm-scale numerical model using retrieved wind fields from single Doppler radar. In the present study, Doppler wind velocities from the Kolkata Doppler weather radar are assimilated into a mesoscale model, MM5 model using the three-dimensional variational data assimilation (3DVAR) system for the prediction of intense convective events that occurred during 0600 UTC on 5 May and 0000 UTC on 7 May, 2005. In order to evaluate the impact of the DWR wind data in simulating these severe storms, three experiments were carried out. The results show that assimilation of Doppler radar wind data has a positive impact on the prediction of intensity, organization and propagation of rain bands associated with these mesoscale convective systems. The assimilation system has to be modified further to incorporate the radar reflectivity data so that simulation of the microphysical and thermodynamic structure of these convective storms can be improved.  相似文献   

5.
Precipitation is one of the main components of the hydrological cycle and knowledge of its spatial distribution is fundamental for the prediction of other closely related environmental variables, for example, runoff, flooding and aquifer recharge. Most of the precipitation in Mexico City is due to convective storms characterized by a high spatial variability, implying that modeling its behavior is very complex. In this work stochastic simulation techniques with a geostatistical approach were applied to model the spatial variability of the rainfall of three convective storms. The analysis of the results shows that using the proposed methodology spatial distributions of rain are obtained that reproduce the statistical characteristics present in the available information.  相似文献   

6.
Satellite observations of cloud top temperature and lightning flash distribution are used to examine the relationship between deep convection and lightning activity over the tropical regions of the northern and southern hemispheres. In agreement with previous work, the analysis of the results shows that, in the summer of both hemispheres, the lightning activity in continental deep convective storms is more intense than that in marine deep convective storms by a factor of between 7 and 10. Furthermore, it was observed that on average the daily lightning rate per 1°×1° grid cell for the southern hemisphere (SH) is about 20% greater than that of the northern hemisphere (NH), which can be attributed to a larger fractional cover by deep convective clouds in the SH. By using a set of independent indicators, it is shown that deep convection and lightning activity over land are well correlated (with correlation coefficients of 0.8 and 0.6 for NH and SH, respectively). This suggests the capacity for observations to act as a possible method of monitoring continental deep convective clouds, which play a key role in regulating the Earth’s climate. Since lightning can be monitored easily from ground networks and satellites, it could be a useful tool for validating the performance of model convective schemes and for monitoring changes in climate parameters.  相似文献   

7.
Migration velocities of convective storms are summarized for six situations, with different environmental wind fields. Small-and medium-sized storms generally moved to left of the direction of, and at speeds somewhat less than, the vector mean wind in the troposphere. Large-diameter (ca. 20–30 km) storms generally deviated to the right, in proportion to their sizes and to the veering of wind with height. This behavior, and the tendency for large storms to move appreciably slower than the mean wind, are even more pronounced when giant clusters of thunderstorms are considered. An example is analyzed in which a multicellular storm, 80 km wide, moved 55° to right of the mean wind and with half its speed. This behavior results from a characteristic pattern of propagation, in which new cells tend to form on the general upwind side of the cluster, with the larger and more intense cells developing on its right flank. The individual cells move through the cluster, dissipating on approach to its advancing and left flanks. Preferential formation of cells toward the rear side of the cluster is shown to be compatible with the probable origin and trajectories (relative to the moving storm) of air ascending from the lower part of the subcloud layer. The sometimes-observed rapid movement of large multicellular storms to left of the mean wind is partly accounted for by an opposite (left forward flank) pattern of propagation.  相似文献   

8.
本文对1959年7月及1960年11月有关太阳貭子爆发的各种地球物理效应,作了較全面和系統的論述。文中在§2-4分別敘述了这期間地磁場扰动、极盖区电波吸收观測与电离层变动情况、以及太阳耀斑与太阳射电爆发.根据以上情况,作者特別着重在§5中論述宇宙綫强度扰乱分析(包括各国进行研究的基本情况、若干特殊分析方法与結果簡介、关于綜合观测和高空探測),并在§6中提出了今后开展工作的几点初步意見。本文引用了北京台的磁暴与宇宙线强度变化記录,并附有較完全的文献目录。  相似文献   

9.
The fact that magnetic clouds are one of the main sources causing geomagnetic storms is a well-established fact. One of the issues is to establish those features of magnetic clouds determinant in the intensity of the Dst corresponding to geomagnetic storms. We examine measurements of geoeffective magnetic clouds during the period 1995–2006 providing geomagnetic storms with Dst indexes lower than ?100 nT. These involve 46 geomagnetic storm events. After establishing the different characteristics of the magnetic clouds (plasma velocity, maximum magnetic intensity, etc.) we show some results about the correlations found among them and the storms intensity, finding that maximum magnetic field magnitude is a determinant factor to establish the importance of magnetic clouds in generating geomagnetic storms, having a correlation as good as the electric convective field.  相似文献   

10.
Atmospheric waves influence the dynamics and energetic budget of the upper atmosphere. Using the continuous HF Doppler sounder, we study the wave activity in the ionosphere during tropospheric convective storms in western and central part of the Czech Republic. The study is focused on acoustic-gravity waves in the period range 2–30 minutes. We discuss possible methods of distinguishing the waves emitted by meteorological sources from waves of different origin, particularly waves of geomagnetic origin. In two cases out of twenty-five analysed, we found waves in the infrasonic period range which might be generated by exceptionally intense meteorological activity in the troposphere. The results differ considerably from those previously obtained in North America. In the central part of the United States, infrasonic waves were frequently observed during convective storms. As a possible reason, we discuss different intensity and dynamics of weather systems in both regions.  相似文献   

11.
Abstract

Almost all runoff from the semiarid rangelands of the Southwestern United States results from intense convective storms of short duration. Depth-duration values for precipitation for this region that are developed through standard procedures may be misleading when used for runoff design. Various combinations of short bursts of rain can, and do, plot on average depth-duration curves, but such curves have little practical meaning for small watersheds (100 square miles or less). For design purposes for small watersheds, depths of precipitation for relatively short periods (15-30-60 minutes) for varying return periods and areas are needed. For runoff design for larger watersheds two probability estimates may be needed—the probability of storms of certain intensities and size falling on tributary watersheds of finite sizes, and the probability of storms developing over a multi-tributary system in such patterns as to produce important volumes and peaks of runoff.  相似文献   

12.
本文通过分析两次大磁暴期间的中性原子(ENA)通量数据,试图揭示环电流离子通量的变化规律,进一步探讨环电流的形成和损失机制,以及磁暴和亚暴的关系.两次磁暴期间ENA通量的变化呈现出一些重要的特征:(1)通量随能量的增高而快速降低,磁暴主相期间高能端通量所占比重增大;(2)通量比例曲线的起伏远比通量曲线的起伏要平缓;(3)通量的起伏与AE指数之间没有简单的对应关系;(4)磁暴恢复相开始前,ENA通量出现短时间的猛烈增长,特别是低能端通量的增长异常迅速;(5)Dst/SYM-H指数快速恢复期间,ENA通量的变化表现为两个完全不同的阶段:先降低,后增大.忽略影响ENA通量的其他次要因素,ENA通量的上述特征直接反映了环电流的发展规律.环电流离子通量随能量的增高快速下降,磁暴主相期间可能由于高能O+的增加使得能谱有所变硬.离子主要受南向行星际磁场(IMF)所引起的对流电场的驱动注入到环电流区域,通量的变化大体上是无色散的.亚暴活动与环电流的增长没有直接的因果关系,但亚暴活动会引起环电流离子通量的短时间尺度波动.恢复相开始前,环电流离子在昏侧区域发生堆积,使得局部离子通量变大.这可能是由于屏蔽电场的形成削弱了内磁层对流电场,造成离子在磁层顶的逃逸损失过程减弱.在Dst/SYM-H指数的快速恢复期间,环电流离子通量的衰减速度也可能发生阶段性变化.这说明Dst/SYM-H指数并不能准确反映环电流的强度,环电流的衰减过程可能具有比先快后慢更为复杂的阶段性模式.  相似文献   

13.
《Advances in water resources》2005,28(11):1230-1239
Taylor’s hypothesis (TH) for rainfall fields states that the spatial correlation of rainfall intensity at two points at the same instant of time can be equated with the temporal correlation at two instants of time at some fixed location. The validity of TH is tested in a set of 12 storms developed in Rondonia, southwestern Amazonia, Brazil, during the January–February 1999 Wet Season Atmospheric Meso-scale Campaign. The time Eulerian and Lagrangian Autocorrelation Functions (ACF) are estimated, as well as the time-averaged space ACF, using radar rainfall rates of storms spanning between 3.2 and 23 h, measured at 7–10-min time resolution, over a circle of 100 km radius, at 2 km spatial resolution. TH does not hold in 9 out of the 12 studied storms, due to their erratic trajectories and very low values of zonal wind velocity at 700 hPa, independently from underlying atmospheric stability conditions. TH was shown to hold for 3 storms, up to a cutoff time scale of 10–15 min, which is closely related to observed features of the life cycle of convective cells in the region. Such cutoff time scale in Amazonian storms is much shorter than the 40 min identified in mid-latitude convective storms, due to much higher values of CAPE and smaller values of storm speed in Amazonian storms as compared to mid-latitude ones, which in turn contribute to a faster destruction of the rainfall field isotropy. Storms satisfying TH undergo smooth linear trajectories over space, and exhibit the highest negative values of maximum, mean and minimum zonal wind velocity at 700 hPa, within narrow ranges of atmospheric stability conditions. Non-dimensional parameters involving CAPE (maximum, mean and minimum) and CINE (mean) are identified during the storms life cycle, for which TH holds: CAPE mean/CINE mean = [30–35], CAPE max/CINE mean = [32–40], and CAPE min/CINE mean = [22–28]. These findings are independent upon the timing of storms within the diurnal cycle. Also, the estimated Eulerian time ACF’s decay faster than the time-averaged space and the Lagrangian time ACF’s, irrespectively of TH validity. The Eulerian ACF’s exhibit shorter e-folding times, reflecting smaller correlations over short time scales, but also shorter scale of fluctuation, reflecting less persistence in time than over space. No significant associations (linear, exponential or power law) were found between estimated e-folding times and scale of fluctuation, with all estimates of CAPE and CINE. Secondary correlation maxima appear between 50 and 70 min in the Lagrangian time ACF’s for storms satisfying TH. No differences were found in the behavior of each of the three ACF’s for storms developed during either the Easterly or Westerly zonal wind regimes which characterize the development of meso-scale convective systems over the region. These results have important implications for modelling and downscaling rainfall fields over tropical land areas.  相似文献   

14.
Extreme rainfalls in South Korea result mainly from convective storms and typhoon storms during the summer. A proper way for dealing with the extreme rainfalls in hydrologic design is to consider the statistical characteristics of the annual maximum rainfall from two different storms when determining design rainfalls. Therefore, this study introduced a mixed generalized extreme value (GEV) distribution to estimate the rainfall quantile for 57 gauge stations across South Korea and compared the rainfall quantiles with those from conventional rainfall frequency analysis using a single GEV distribution. Overall, these results show that the mixed GEV distribution allows probability behavior to be taken into account during rainfall frequency analysis through the process of parameter estimation. The resulting rainfall quantile estimates were found to be significantly smaller than those determined using a single GEV distribution. The difference of rainfall quantiles was found to be closely correlated with the occurrence probability of typhoon and the distribution parameters.  相似文献   

15.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

16.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

17.
The development and testing of sediment simulation models require continuous monitoring of erosion processes and sediment yields from catchment areas at a wide range of scales. A series of experiments are described in which runoff and sediment yields from a small laboratory catchment were monitored through six consecutive storms applied to each of three soil types. Slope microtopography and the surface particle-size distribution were surveyed between storms. Pronounced peaks in sediment concentration at the start of each storm were not observed for these conditions, but significant variation in yield through a series of storms was shown to result from the interaction of rilling and armouring processes as the source of sediment shifted from the rills to interrill areas. In view of the experimental findings the validity of experiments reporting average or ‘stable’ erosion rates is questioned. The need for dynamic models capable of simulating rill development and changes in sediment availability is emphasized.  相似文献   

18.
The dependence of the particle energy spectra on the acceleration and loss rates is studied based on the analytical solutions to the equation for the particle distribution function, taking into account diffusion in the momentum space (stochastic acceleration) and loss (due to particle escape from the acceleration region). The energy spectra and time dynamics of the MeV electron fluxes, observed based on the geostationary satellite data during the prolonged recovery phases of the known magnetic storms of June 11, 1980 and November 3–4, 1993, have been analytically described. The acceleration and loss rates have been estimated for these storms. A comparison is performed with the preciously studied energy spectra of MeV electrons and with the acceleration and loss rates during the recovery phases of the magnetic storms of January 10, 1997, and April 6, 2000.  相似文献   

19.
In thirteen years (1973–1986) of seismic monitoring of Pavlof Volcano, 488 episodes of volcanic tremor have been recorded, only 26 of which have been previously described in the literature. This paper tabulates and describes all the tremor episodes and reports on the results of all analyses to date. Pavlof tremor durations range from 2 minutes to greater than 1 week; episodes accompanying magmatic eruptions have durations greater than 1 hour, and sustained amplitudes of greater than 6 mmP-P (=54 nanometers at 1.5 Hz) on station PVV, 8.5 km from the vent. Digital data provide much better amplitude resolution than helicorders do. Helicorders, however, provide continuous coverage, whereas digital data are intermittent. Correlations of tremor with visual eruption observations shows that tremor amplitudes are roughly correlated with heights of lava fountains, but the correlation of tremor amplitudes with plume heights is more problematic. Fast Fourier Transform (FFT) spectra show that Pavlof tremor is quite statinary for the entire time period, 1973–1983. All principal spectral peaks lie between 0.8 and 3.0 Hz, and may be caused by resonance of magma and gas, and resonance of the volcanic pile. Preliminary analysis of 2-and 3-component data shows thatP, S, PL, and Rayleigh waves may be present in Pavlof volcanic tremor. Other waveforms can be misidentified as tremor, most commonly those caused by storms orS-waves of regional earthquakes. A strategy is proposed to distinguish tremor from noise using automatic seismic data acquisition and analysis systems. Pavlof's volcanic tremor is briefly compared with a preliminary sample of over 1100 cases of tremor from 84 volcanoes worldwide. Finally, several recommendations for monitoring and reporting volcanic tremor are discussed.  相似文献   

20.
本文利用Madrigal数据库的TEC数据对2001—2010年间的156次单主相型磁暴事件,统计分析了欧洲扇区从赤道到极光带共5个纬度区域的电离层暴特征,结果表明:(1)电离层暴有明显的纬度分布特征,正负暴出现次数的比例随纬度的降低呈现明显的增加趋势,但夏季赤道地区趋势相反,正负暴比例比更高纬度的反而降低;(2)与主相相比,恢复相期间大部分纬度地区正暴数量减少,负暴数量增加,但赤道地区恢复相期间正暴数量反而增加;(3)中低纬地区电离层暴随磁暴MPO地方时分布特征明显,正暴所对应的MPO主要分布在白天,而MPO发生在夜间容易引起负暴;(4)电离层负暴主要发生在夜间,中、高纬地区负暴的开始时间存在‘时间禁区’,但不同纬度‘时间禁区’的地方时分布有一定差异,正暴分布则相对分散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号