首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we extend the previous studies of semi-brittle flow of synthetic calcite-quartz aggregates to a range of temperatures and effective pressures where viscous creep occurs. Triaxial deformation experiments were performed on hot-pressed calcite-quartz aggregates containing 10, 20 and 30 wt% quartz at confining pressure of 300 MPa, pore pressures of 50-290 MPa, temperatures of 673-1073 K and strain rates of 3.0×10−5/s, 8.3×10−5/s and 3.0×10−4/s. Starting porosity varied from 5 to 9%. We made axial and volumetric strain measurements during the mechanical tests. Pore volume change was measured by monitoring the volume of pore fluid that flows out of or into the specimen at constant pore pressure. Yield stress increased with decreasing porosity and showed a dependence on effective pressure. Thus, the yield stress versus effective pressure can be described as a yield surface with negative slope that expands with decreasing porosity and increasing strain hardening, gradually approaching the envelope of strength at 10% strain, which has a positive slope. Creep of porous rock can be modeled to first order as an isolated equivalent void in an incompressible nonlinear viscous matrix. An incremental method is used to calculate the stress-strain curve of the porous material under a constant external strain rate. The numerical simulations reproduce general trends of the deformation behavior of the porous rock, such as the yield stress decreasing with increasing effective pressure and significant strain hardening at high effective pressure. The drop of yield stress with increasing porosity is modeled well, and so is the volumetric strain rate, which increases with increasing porosity.  相似文献   

2.
— The influence of differential stress on the permeability of a Lower Permian sandstone was investigated. Rock cylinders of 50 mm in diameter and 100 mm length of a fine-grained (mean grain size 0.2 mm), low-porosity (6–9%) sandstone were used to study the relation between differential stress, rock deformation, rock failure and hydraulic properties, with a focus on the changes of hydraulic properties in the pre-failure and failure region of triaxial rock deformation. The experiments were conducted at confining pressures up to 20 MPa, and axial force was controlled by lateral strain with a rate ranging from 10?6 to 10?7 sec?1. While deforming the samples, permeability was determined by steady-state technique with a pressure gradient of 1 MPa over the specimen length and a fluid pressure level between 40 and 90% of the confining pressure. The results show that permeability of low-porosity sandstones under increasing triaxial stress firstly decreases due to compaction and starts to increase after the onset of dilatancy. This kind of permeability evolution is similar to that of crystalline rocks. A significant dependence of permeability evolution on strain rate was found. Comparison of permeability to volumetric strain demonstrates that the permeability increase after the onset of dilatancy is not sufficient to regain the initial permeability up to failure of the specimen. The initial permeability, which was determined in advance of the experiments, usually was regained in the post-failure region. After the onset of dilatancy, the permeability increase displays a linear dependence on volumetric strain.  相似文献   

3.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

4.
In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.  相似文献   

5.
The frictional properties of a crushed granite gouge and of gouges rich in montmorillonite, illite, and serpentine minerals have been investigated at temperatures as high as 600°C, confining pressures as high as 2.5 kbar, a pore pressure of 30 bar, and sliding velocities of 4.8 and 4.8×10–2 m/sec. The gouges showed nearly identical strength behaviors at the two sliding velocities; all four gouges, however, showed a greater tendency to stick-slip movement and somewhat higher stress drops in the experiments at 4.8×10–2 m/sec. Varying the sliding velocity also had an effect on the mineral assemblages and deformation textures developed in the heated gouges. The principal mineralogical difference was that at 400°C and 1 kbar confining pressure a serpentine breakdown reaction occurred in the experiments at 4.8×10–2 m/sec but not in those at 4.8 m/sec. The textures developed in the gouge layers were in part functions of the gouge type and the temperature, but changes in the sliding velocity affected, among other features, the degree of mineral deformation and the orientation of some fractures.  相似文献   

6.
We performed deformation experiments using Carrara marble in dry and wet conditions under temperature of 400~700℃ and confining pressure 300MPa with two different strain rates. Water contents of deformed samples were measured using FTIR spectroscopy. The microstructure and deformation mechanisms of samples were observed under optical microscopy, scanning electron microscopy and energy spectroscopy analysis. The mechanical data show that samples display strain hardening at 400℃, and transition to steady creep at temperature from 500~700℃. The strength of marble reduced gradually with elevated temperatures or decreased strain rate. However, water effect to the strength of the marble is significantly weak. Microstructures observed show that the deformation is cataclastic flow in dry samples, fracture and pressure solution in wet samples at 400℃. Samples underwent brittle-plastic transition at 500℃. Dislocation glide is major deformation mechanism for dry samples at 600℃. Dislocation climb and dynamic recrystallization are major deformation mechanism for wet samples at 600℃ and for all wet samples and dry samples at 700℃. Lower strain rate and higher water content could promote the process of pressure solution and diffusion as well as dynamic recrystallization.  相似文献   

7.
We investigated initiation and propagation of compaction bands (CB) in six wet and four dry Bentheim sandstone samples deformed in axial compression tests with strain rates ranging from 3.2 × 10?8 s?1 to 3.2 × 10?4 s?1. Circumferential notches with 0.8-mm width and 5-mm depth served to initiate CB at mid-sample length. Wet samples were saturated with distilled water and deformed at 195 MPa confining pressure and 10 MPa pore pressure. Dry samples were deformed at 185 MPa confining pressure. Twelve P-wave sensors, eight S-wave sensors and two pairs of orthogonally oriented strain-gages were glued to the sample surface to monitor acoustic emission (AE), velocities and local strain during the loading process. Nucleation of compaction bands is indicated by AE clusters close to the notch tips. With progressive loading, AE activity increased and AE hypocenters indicated propagation of a single CB normal to the sample axis. CB propagation from the sample periphery towards the centre was monitored. Microstructural analysis of deformed samples shows excellent agreement between location of AE clusters and CBs. In both dry and wet samples the lateral propagation of CBs was about 100 times faster than axial shortening rates. At the slowest displacement rate, AE activity during band propagation was reduced and CB nucleation in wet samples occurred at 20% lower stresses. This may indicate an increasing contribution of stress corrosion processes to the formation of the compaction bands. In dry and wet samples inelastic compaction energy per area ranged between 16 and 80 kJ m?2. This is in good agreement with previous estimates from laboratory and field studies.  相似文献   

8.
Summary The real area of contact has been determined, and measurements of the maximum and average surface temperatures generated during frictional sliding along precut surfaces in Tennessee sand-stone have been made, through the use of thermodyes. Triaxial tests have been made at 50 MPa confining pressure and constant displacement rates of 10–2 to 10–6 cm/sec, and displacements up to 0.4 om. At 0.2 cm of stable sliding, the maximum temperature decreases with decreasing nominal displacement rate from between 1150° to 1175°C at 10–2 cm/sec to between 75° to 115°C at 10–3 cm/sec. The average temperature of the surface is between 75 and 115°C at 10–2 cm/sec, but shows no rise from room temperature at 10–3 cm/sec. At 0.4 cm displacement, and in the stick-slip mode, as the nominal displacement rate decreases from 10–3 to 10–6 cm/sec, the maximum temperature decreases from between 1120° to 1150°C to between 1040° to 1065°C. The average surface temperature is 115° to 135°C at displacement rates from 2.6×10–3 to 10–4 cm/sec.With a decrease in the displacement rate from 10–2 to 10–6 cm/sec, the real area of contact increases from about 5 to 14 percent of the apparent area; the avergge area of asperity contact increases from 2.5 to 7.5×10–4 cm2. Although fracture is the dominate mechanism during stick-up thermal softening and creep may also contribute to the unstable sliding process.  相似文献   

9.
Single-cycle and multiple-cycle frictional-sliding experiments were employed to evaluate the effects of pore fluid environments on yield strength, frictional-sliding dynamics, and gouge production and morphology. Circular right cylinders cored from Berea sandstone sawcut at 35° to the axes were saturated in water, an inorganic brine, and various anionic, cationic, and nonionic aqueous surface-active agents. Samples were deformed under an effective confining pressure of 50 MPa and an axial strain rate of 6×10–5 sec–1 until a 2% axial strain beyond yield (defined as the onset of sliding) was achieved. All samples were displaced by stable sliding. In the single-cycle tests the unsaturated and water-saturated samples displayed small stress peaks at yield. During stable sliding samples saturated with DTAB and SDS displayed slight increases in differential stress and statistically significant higher frictional coefficients than other environments (including water) but were very similar in behavior to dry, unsaturated samples. In the multiple-cycle tests, samples were loaded to 2% strain beyond yield and unloaded to a differential stress of approximately 5–10 MPa a total of four times. These results further suggest that DTAB exerts a strengthening effect on the sandstone relative to water which, to a limiting value, increased with displacement. The DTAB and SDS environments also produced a coarser grain-size distribution in the gouge relative to gouge produced in the other environments. Investigation of the gouge by scanning electron microscope revealed that these larger grains were composed of dense, apparently cemented aggregates of ultrafine, platy quartz particles.  相似文献   

10.
—Uniaxial compression, triaxial compression and Brazialian tests were conducted on several kinds of rock, with particular attention directed to the principal tensile strain. In this paper we aim to clarify the effects of the experimental environment—such as confining pressure, loading rate, water content and anisotropy—on the critical tensile strain, i.e., the measured principal tensile strain at peak load.¶It was determined that the chain-type extensometer is a most suitable method for measuring the critical tensile strain in uniaxial compression tests. It is also shown that the paper-based strain gage, whose effective length is less than or equal to a tenth of the specimen’s diameter and glued on with a rubber-type adhesive, can be effectively used in the Brazilian tests.¶The effect of confining pressure P C on the critical tensile strain ? TC in the brittle failure region was between ?0.02 × 10?10 Pa?1 and 0.77 × 10?10 Pa?1. This pressure sensitivity is small compared to the critical tensile strain values of around ?0.5 × 10?2. The strain rate sensitivities ?? TC /?{log(d|?|/dt)} were observed in the same way as the strength constants in other failure criteria. They were found to be from ?0.10 × 10?3 to ?0.52 × 10?3 per order of magnitude in strain rate in the triaxial tests. The average magnitude of the critical tensile strain ? TC increased due to the presence of water by 4% to 20% for some rocks, and decreased by 22% for sandstone. It can at least be said that the critical tensile strain is less sensitive to water content than the uniaxial compressive strength under the experimental conditions reported here. An obvious anisotropy was observed in the P-wave velocity and in the uniaxial compressive strength of Pombetsu sandstone. It was not observed, however, in the critical tensile strain, although the data do show some variation.¶A "tensile strain criterion" was proposed, based on the above experimental results. This criterion signifies that stress begins to drop when the principal tensile strain reaches the critical tensile strain. The criterion is limited to use within the brittle failure region. The critical tensile strain contains an inelastic strain component as well as an elastic one. It is affected by the strain rate, however, it is relatively insensitive to the confining pressure, the presence of water and anisotropy.  相似文献   

11.
Deformation mechanisms in experimentally and naturally deformed amphiboles   总被引:1,自引:0,他引:1  
Experimental deformation of an igneous hornblendite at 600–750°C, 10 kbars confining pressure and a strain rate of 10 ?5 sec?1 results in kink bands whose normals cluster about [001] and axes of external rotation subparallel to [010]. This is consistent with glide on the system T = (100), t = [001]. At temperatures of 800°C to the breakdown temperature of the hornblende, external rotation axes spread along the (100) plane although kink band boundary poles remain subparallel to [001]. This indicates glide on the (100) plane in variable directions. Analysis of bend zones in a naturally deformed actinolite indicates glide on the (100), [001] system. Mechanical (101) twinning was not observed in any of the samples, and we suggest that in these amphiboles the critical resolved shear stress for glide is lower than that for twinning.  相似文献   

12.
剪切破裂与粘滑——浅源强震发震机制的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
周口店花岗闪长岩的高温高压三轴实验和理论分析表明,剪切破裂和摩擦滑移具有类似的孕育过程和发生机制。剪切破裂贯通强度就是一种摩擦强度。剪切破裂和摩擦滑移各自都有渐进式和突发式之分。突发式摩擦滑移是已有断层的粘滑滑移。突发式剪切破裂则是完整岩石的初始粘滑滑移。考虑到地壳温度随深度增加,完整岩石剪裂强震要求较高的围压,因此,多数浅源强震的发震方式很可能是已有断层的粘滑  相似文献   

13.
This study considers the effects of heat transfer and fluid flow on the thernal, hydrologic, and mechanical response of a fault surface during seismic failure. Numerical modeling techniques are used to account for the coupling of the thermal, fluid-pressure, and stress fields. Results indicate that during an earthquake the failure surface is heated to a tempeature required for the thermal expansion of pore fluids to balance the rate of fluid loss due to flow and the fluid-volume changes due to pore dilatation. Once this condition is established, the pore fluids pressurize and the shear strength decreases rapidly to a value sufficient to maintain the thermal pressurization of pore fluids at near-lithostatic values. If the initial fluid pressure is hydrostatic, the final temperature attained on the failure surface will increase with depth, because a greater pressure increase can occur before a near-lithostatic pressure is reached. The rate at which thermal pressurization proceeds depends primarily on the hydraulic characteristics of the surrounding porous medium, the coefficient of friction on the fault surface, and the slip velocity. If either the permeability exceeds 10–15 m2 or the porous medium compressibility exceeds 10–8 Pa–1, then frictional melting may occur on the fault surface before thermal pressurization becomes significant. If the coefficient of friction is less than 10–1 and if the slip velocity is less than 10–2 msec–1, then it is doubtful that either thermal pressurization or frictional melting on the fault surface could cause a reduction in the dynamic shear strength of a fault during an earthquake event.  相似文献   

14.
The effect of light intensity on the release of dissolved organic carbon during photosynthesis on NaH14CO3 was investigated using the phytoplanktonic CyanobacteriumOscillatoria rubescens. The released products were fractionated by molecular size and chemical identifications attempted using combined thin-layer electrophoresis and chromatography, and high pressure liquid chromatography.Within the range of irradiances tested (from 6 to 60 µmole m–2 sec–1), though the upper one inhibited photosynthesis ofO. rubescens, light had little effect on the quantity and composition of the excreted products. The released carbon was always lower than 3% of the incorporated carbon, and mainly composed (62 to 86%) by small molecular weight compounds. The prevailing identified compounds were amino acids which represented more than 20% of the excreted carbon. Among organic acids, glycolic acid accounted for less than 2% of the recovered radioactivity. Glucose was the only identified sugar.Abbreviations EOC excreted organic carbon - DOC dissolved organic carbon - PER percent extracellular release - LMW low molecular weight - HMW high molecular weight - AA amino acids - µmoles m–2 sec–1 = µEinsteins m–2 sec–1  相似文献   

15.
Summary The number and size of salt particles produced by the bursting of air bubbles in sea water has been measured. Bubbles of diameters varying between 1/2 and 2 mm each produced about 300 nuclei the sizes of which, under the electron microscope, were mainly between 0.1 and 0.5 diameter. They appeared to consist mainly of sodium chloride, the smallest ones containing only 10–15 g of salt.These results, together with measurements of the size distribution of salt nuclei collected over the oceans in areas of spray formation, indicate that the total concentrations of salt nuclei over the oceans in winds of up to 15 m sec–1 probably do not exceed 100 cm–3. The corresponding rate of production of salt nuclei at the sea surface is estimated to be 1000 cm–2 sec–1. It is therefore inferred that sea spray contributes perhaps only one-fifth of the nuclei involved in cloud formation, the majority being the products of combustion, either natural or man-made.  相似文献   

16.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

17.
嵇少丞 《地震学报》1987,9(2):208-216
利用 Kolsky 扭转棒作为实验装置,笔者在常温常压条件下对干燥的和潮湿的大理岩试样进行了一系列的动态简单剪切的实验变形研究,以期了解在高应变率(373-1-1736-1)时岩石中孔隙水对于岩石抗剪强度的影响.结果表明,孔隙水的存在不但没有降低,反而稍微提高了岩石的抗剪强度.结合前人在静态条件下的实验研究资料,笔者认为水对岩石变形的作用机制随应变率的变化而改变.在低应变率(例如:10-9-1)时,水对岩石变形的影响分别表现为压溶作用、应力侵蚀作用和降低有效应力的效应.压溶作用和应力侵蚀作用导致岩石强度的降低;而有效应力的降低则导致岩石强度的相对提高.   相似文献   

18.
The rheological properties of mantle materials are being investigated up to pressures of 16 GPa and temperatures of 1600°C for times up to 24 h, using a new sample assembly for the 6–8 multi-anvil apparatus. Al2O3 pistons, together with a liquid confining medium, are used to generate deviatoric stress in the specimen. Strain rates are estimated by monitoring the relative displacement of the guide blocks of the multi-anvil apparatus, scaled to the total axial strain of the sample. The applied stress on the sample is estimated using grain size piezometry. Strain rates and flow stresses of approximately 10–4 to 10–6 s–1 and 50 to 250 MPa respectively, are presently attainable.Preliminary results on San Carlos olivine single crystals, partially dynamically recrystallized to a grain size of 10 to 300 m, indicate that the effective viscosity of polycrystalline olivine is consistent with values obtained from olivine single crystal creep laws. Assuming a dislocation creep mechanism (n3.5) with (010)[001] as the dominant slip system, the data are best fit using a creep activation volume of 5 to 10×10–6 m3 mol–1.  相似文献   

19.
Summary The analysis is given for an improved aspiration-type mobility chamber which suppresses the growth of boundary layers and turbulence at the electrodes by employing converging-channel geometry. The distribution of small ions in air as a function of their mobility is determined from data taken with the converging-channel chamber. The results show that the distribution of positive ions is quite stable with an average mobility of about 1.35 cm2 volt–1 sec–1 (at STP). The negative-ion distribution is broader, less stable, and the average mobility shifts from about 2.1 to 1.7 cm2 volt–1 sec–1 with the addition of water vapor. The effect of Aitken nuclei upon the mobility distribution is also discussed. The results are compared with previous measurements.  相似文献   

20.
Summary Airborne particulate matter was sampled at Mt. Cimone, Italy, to determine the size distribution of black spherules in the 1–5 diameter range. The magnetic fraction of airborne particulate matter was separated by forcing air through a strong magnetic sampling device, where ferromagnetic particles accumulated on microscope slides.Sizes of the black spherules were determined by counting under a microscope. Samples were dissolved and analyzed for iron content. Distribution was found to be in agreement with that of deep-sea sediment and satellite high atmosphere samples. The rate of terrestrial accretion of cosmic matter composed of black spherules appears to be approximately 10–15 g cm–2 sec–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号