首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We proposed a method for diagnostics of the horizontal velocity field based on 2D observations at the center of the solar disk with high spatial and temporal resolution. The method consists in semiempirical modeling of the solar atmosphere by solving the inverse radiative transfer problem and subsequent obtaining horizontal velocities by solution of the corresponding hydrodynamic equations. We investigated the diagnostic capabilities of the line Ba II λ 455.403 nm (considering hyperfine structure and isotope splitting) for studying the horizontal velocity field of the nonhomogeneous solar atmosphere.  相似文献   

2.
We determined the locations of Galactic spiral arm segments for various age groups from the available data on the positions, ages, radial velocities, and proper motions of 440 δ Cephei variables using a previously developed technique. We obtained such parameters of the Galactic spiral structure as the arm pitch angle, , and the pattern speed, ΩP = 21.7 ± 2.8 km s?1 kpc?1, which are comparable to and ΩP = 20.4 ± 2.5 km s?1 kpc?1, respectively, determined previously from open star clusters. Based on the radial velocities and proper motions of the sample stars, we derived the rotation curve of the Galaxy for the range of Galactocentric distances approximately from 6 to 15 kpc. Using the pattern speed, we determined the positions of the corotation region and the inner and outer Lindblad resonances. We estimated the perturbation amplitudes of the Galactic velocity field, f R = ?1.8 ± 2.5 km s?1 and f ? = +4.0 ± 3.4 km s?1.  相似文献   

3.
Based on five high-resolution spectra in the range 5625–7525 ?A taken in 1995 and covering the ascending branch of the light curve from minimum to maximum, we have performed spectroscopic studies of the classical Cepheid ζ Gem. The atmospheric parameters and chemical composition of the Cepheid have been refined. The abundances of the key elements of the evolution of yellow supergiants are typical for an object that has passed the first dredge-up: a C underabundance, N, Na, and Al overabundances, and nearly solar O and Mg abundances. We have estimated [Fe/H] = +0.01 dex; the abundances of the remaining elements are also nearly solar. The metal absorption lines in all spectra show a clear asymmetry and the formation of secondary blue (B1 and B2) and red (R1 and R2) components, just as for the Cepheid X Sgr. The Hα absorption line is also split into blue (B) and red (R) components with different depths changing with pulsation phase. To analyze the velocity field in the atmosphere of ζ Gem, we have estimated the radial velocities from specially selected (with clear signatures of the B1, B2, R1, and R2 components) absorption lines (neutral atoms and ions) of metals (38 lines) and the B and R components of the Hα line. Analysis of these estimates has shown that their scatter is from ?22 to 36 km s?1 for all pulsation phases but does not exceed 35–40 km s?1 for each individual phase, while it does not exceed 22 km s?1 for the Hα line components. The radial velocity estimates for the metal lines and their B1 and B2 components have been found to depend on the depths, suggesting the presence of a velocity gradient in the atmosphere. No significant difference in velocities between the atoms and ions of the metal lines is observed, i.e., there is no significant inhomogeneity in the upper atmospheric layers of the Cepheid. Since the averaged radial velocity estimates for the cores of the metal lines and their B1 and B2 components change with pulsation phase and coincide with those for the B component of the Hα line, they are all formed in the Cepheid’s atmosphere. The formation and passage of a shock wave due to the κ-mechanism at work can be responsible for the stronger scatter of the B1 and B2 components in their velocities at phases after the Cepheid’s minimum radius. The averaged velocities of the R1 components also change with pulsation phase and differ only slightly from the remaining ones. On the other hand, the mean velocity estimate for the R component of the Hα line at all phases is +32.72 ± 2.50 km s?1 and differs significantly from the bulk of the velocities, suggesting the formation of this component in the envelope around the Cepheid. The unusual behavior of the mean velocities for the R2 components of the metal absorption lines can also point to their formation in the envelope and can be yet another indicator of its presence around ζ Gem.  相似文献   

4.
The two-dimensional equation of transfer is solved for the case of locally-controlled source function (LTE) and radiationally-controlled ionization. Horizontal fluctuations in electron temperature and macroscopic velocity fields are superposed on the basic one-dimensional model (cf. Altrock and Cannon, 1972). Output intensities are compared with observed rms intensity fluctuations and spatially-averaged intensities in Mg i 4571 Å. We find that at least one model (with a height-independent temperature fluctuation T/T=±0.02 in the range 0h450 km) can predict the magnitude of the intensity fluctuations in both the continuum and 4571 Å. The asymmetry of the line can be explained by adding a height-independent, temperature-correlated flow of amplitude 1 to 2 km s–1. The relationship between these results and other multi-dimensional analyses is discussed.On leave from Department of Applied Mathematics, University of Sydney, Sydney, Australia.  相似文献   

5.
The results of a reduction of the dataset obtained with the RATAN-600 within the framework of the “Cosmological Gene” project are reported. The project was performed in order to estimate the contribution of atmospheric noise in observations of Galactic background radiation. Atmospheric noise prevails on time scales exceeded 10–100 seconds. The efficiency of preselecting the data with low atmospheric noise on the time scales of interest is demonstrated. The potential of the “Cosmological Gene” project for different accumulation times in the sky area studied are assessed with the effect of real atmospheric noise taken into account.  相似文献   

6.
In this paper we aim to suggest on a speculative basis that the existence of mass loss by stellar wind in massive stars (M>10 M ) may affect the properties of the Cephei instability strip, and remove some of the difficulties encountered in the interpretation of their pulsation.  相似文献   

7.
The results of observations of polarization for the Be star And that are given are in fully satisfactory agreement with the results obtained by Arsenijevic, Vince, and Kubicela in 1974-1977. All these observations together support Harmanec's hypothesis that strengthening of the circumstellar envelope of And occurs during periastron passage of its companion, moving in an elongated orbit with a period of 8.5 years. The results of polarimetric observations of LZ Cep indicate that its slight, variable intrinsic polarization may originate, as in most semidetached systems, in the scattering of radiation of these stars from particles of matter escaping from the component that is filling its Roche lobe.  相似文献   

8.
From results of spectral (in Ba II λ 455.4-nm line) and spectropolarimetric (in Fe I λλ 1564.3–1565.8-nm lines) observations of the active region (an isolated faculae at the solar disk center) with the German vacuum tower telescope (VTT) at the Institute of Astrophysics on the Canary Islands, the peculiarities of propagation of five-minute oscillations from the photosphere base (h = 0 km) to the lower chromosphere (h = 650 km) were investigated. At the height of the continuum formation (h = 0 km), the nature of wave propagation in the active region does not differ much from that in the quiet region: 80–90% of the investigated areas are occupied by waves moving up and down. In the lower chromosphere (h = 650 km), differences in the behavior of the waves are fundamental. In a quiet area, the waves become standing for 90% of the cases. In contrast to this, in the presence of moderate and strong magnetic fields (B = 30–180 mT), in 47% of the cases, the waves are running upward, which gives the principal possibility to heat the active region. The investigations revealed the presence of the waves in the active region, for which the phase shift Φ T,V of the temperature and velocity oscillations is between ?90° and 0°. These waves cannot propagate in a quiet atmosphere.  相似文献   

9.
The shape parameters of a number of selected ultraviolet lines in BUSS-spectra of the Beta Cephei stars Peg and Cep have been analyzed to determine the principal parameters of the atmospheric velocity field. We find for both stars a fairly high value (5 km s–1) for the microturbulent line-of-sight velocity component, which confirms an earlier result based on lower resolution UV spectra. Macroturbulent and rotational velocities are virtually zero in the atmosphere of Peg; for Cep we findv rotsini=40 km s–1.On leave from Akita University, Akita, Japan.  相似文献   

10.
We present a study of the β Cephei instability strip based on a sample of 49 stars of this type.After deriving their effective temperatures and luminosities from their observed(B-V),(U-B) colors and parallaxes we find their positions in the HR diagram to be mostly confined to the main sequence,and their masses to lie between 7 M and 30 M.Their distribution on the HR diagram matches well with our previous theoretical instability strip which has an upper bound in the luminosity and rather tight boundaries in the effective temperature.  相似文献   

11.
Measurements from the 1225 to 1340 Å region by the ultraviolet detectors on Mars-3 are presented. Model calculations of the intensity of the OI triplet lines at 1304 Å are compared with the measurements made on December 27, 1971, and February 17, 1972. Agreement is found between experimental data and a model in which the neutral oxygen density at 100 km is 2–8 × 109 cm?3.  相似文献   

12.
The upper atmospheric layer of Venus, Mars, Jupiter, Saturn, and earth contains an aerosol layer. The meteorites, rings, and removal of small planetary particles may be responsible for its appearance. The observations from 1979–1992 have shown that the optical aerosol thickness over the earth’s polar regions varies from τ ≈ 0.0002 to 0.1 to λ = 1 μm. The highest τ value was in 1984 and 1992 and was preceded by intense activity of the El Chichon (1982) and Pinatubo (1991) volcanoes. We have shown that increase in τ of the stratospheric aerosol may lead to decrease in ozone layer registered in the 1970s. The nature of the stratospheric aerosol (a real part of the refraction index), effective size particles r, and latitudinal variation τ remain unknown. The analysis of phase dependence of the degree of polarization is effective among the distal methods of determination of n r and r. The observation value of intensity and degree of polarization in the visible light are caused by the optical surface properties and optical atmospheric thickness, whose values varied with latitude, longitude, and in time. Thus, it is impossible to correctly distinguish the contribution of the stratospheric aerosol. In UV-rays (λ < 300 nm), the ozone layer stops the influence of the surface and earth’s atmosphere up to height of 20–25 km. In this spectrum area, the negative factors are emission of various depolarizating gases, horizontal heterogeneity of the effective optical height of the ozone layer, and oriented particles indicated by variation of the polarization plane.  相似文献   

13.
This paper presents the result of UBV photoelectric photometry of VV Cephei. The contact times are determined from the B-V and U-B curves. The epoch of mideclipse is JD 2443361 in agreement with prediction. The unequal depths of the falling and rising branches of the colour curves can be explained by gas streaming from the M-type supergiant component. The radius of the M-type supergiant is about 1860 R and its atmosphere has a thickness of 450 R.  相似文献   

14.
Eselevich  V.G.  Fainshtein  V.G.  Eselevich  M.V. 《Solar physics》2001,200(1-2):259-281
A technique is proposed for separating the rays of the streamer belt with quasi-stationary and non-stationary solar wind (SW) flows. It is shown that the lifetime of rays with a quasi-stationary SW can exceed 20 days. A new method has been developed for measuring the relative density distribution of a quasi-stationary slow SW flowing along the streamer belt's ray of increased brightness, based on the LASCO/SOHO data. It is shown that the density n for such SW flows varies with the radius R according to the relationship nR , where =13.3–3.9 within 4 R 0 R 6 R 0 (here R 0 is the solar radius), and decreases gradually further away. It is also shown that the V(R)-profiles in some rays of the streamer belt differ little from each other, although the value of the mass flow density, j E, at the Earth's orbit in them can vary more than by a factor of 4. This distinguishes in a crucial respect a slow SW in the streamer belt's rays from a fast SW originating in coronal holes, for which j Econstant and the dependences V(R) in different fast flows can differ greatly.  相似文献   

15.
The height distribution of the kinetic temperature of solar H spicules is determined using the widths of optically thin hydrogen and metallic lines obtained at the total solar eclipse of 1966: the temperature was found to be 8600 K at the height of 2200 km measured from the radial optical depth of unity at 5000 Å, and to decrease to a minimum of 5000 K ± 180 K at 3200 km, and to increase again to 8200 K at 6000 km.The height distribution of the non-thermal turbulent velocity is also determined and is shown to be consistent with the neutral helium line widths emitted at the kinetic temperature of 5000–8000 K.  相似文献   

16.
V. Bumba 《Solar physics》1987,110(1):51-57
We have tried to decide whether the typical circular cellular-like features, which are striking during some intervals in the large-scale distribution of weak magnetic fields measured with low resolution, are related to large-scale convective motions. Two scales of such patterns were found and their morphological, kinematical and evolutionary behaviour was estimated. Their slower and overall rotation is also demonstrated in comparison with the rotation of highly averaged sunspot and magnetic fields. It is difficult to explain all the observed characteristics as random, or due to the method of field measurement and map construction used. We also discuss the change of their magnetic field polarities with the solar polar field reversal.  相似文献   

17.
An explanation is offered for the impulsive increase in the concentration of cosmogenic radiocarbon in annual tree rings (Δ14C ~ 12‰) from AD ?775. A possible cause of such an increase could be the high-energy emission from a Galactic gamma-ray burst. It is shown that such an event should not lead to an increase in the total production of 10Be in the atmosphere, as distinct from the effect of cosmic-ray fluxes on the atmosphere. At the same time, the production of an appreciable amount of 36Cl, which can be detected in Greenland and Antarctica ice samples of the corresponding age, should be expected. This allows the effects caused by a gamma-ray burst and anomalously powerful proton events to be distinguished.  相似文献   

18.
To correctly determine the relative contribution of aerosol to the scattering properties of a gas–aerosol medium in the continuum, we propose a method that allows more reliable values of the imaginary part of the refractive index n i to be obtained for Jupiter’s atmosphere in the short-wavelength spectral range. We considered the measurement data on the spectral values of the geometric albedo of Jupiter acquired in 1993 and used the model of homogeneous spherical aerosol particles. The obtained values of n i are 0.00378, 0.00309, 0.00254, 0.00175, 0.00123, 0.00084, 0.00064, 0.00045, 0.00031, 0.00033, 0.00013, and 0.00008 at wavelengths λ = 320, 350, 375, 400, 420, 450, 470, 500, 520, 550, 606, and 631 nm, respectively.  相似文献   

19.
This paper analyzes data on thermal explosions of large meteoroids in the earth’s atmosphere. The cumulative function of flux of space bodies is corrected with regard to the explosion height, which is determined, according to our approach, by maximum braking. As a result, the integral function of flux in the work [Brown, P., Spalding, R.E., ReVelle, D.O., et al., The Flux of Small Near-Earth Objects Colliding with the Earth, Nature, 2002, vol. 420, pp. 314–316] is consistent with the one we derived earlier. It is found that at least one phenomenon of those discussed in the paper by Brown et al. is a result of explosion of a comet nucleus fragment. It is shown that the Tunguska phenomenon cannot be explained within a monolithic body model.  相似文献   

20.
Using the Fourier Transform Spectrometer at the Canada-France-Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to , the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号