首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary The geopotential on and outside the earth is represented as a series in surface harmonics. The principal terms in it correspond to the solid harmonics of the external potential expansion with the coefficients being Stokes’ constantsC nm andS nm . The additional terms which occur near the earth’s surface due to its non-sphericity and topography are expressed in terms of Stokes’ constants too. This allows performing downward continuation of the potential derived from satellite observations. In the boundary condition which correlates Stokes’ constants and the surface gravity anomalies there occur additional terms due to the earth’s non-sphericity and topography. They are expressed in terms of Stokes’ constants as well. This improved boundary condition can be used for upward and downward continuations of the gravity field. Simple expressions are found representingC nm andS nm as explicit functions of the surface anomalies and its derivatives. The formula for the disturbing potential on the surface is derived in terms of the surface anomalies. All the formulas do not involve the earth’s surface in clinations.  相似文献   

2.
    
Summary It is shown that the divergence of the spherical harmonics series of the geopotential V at the earth’s surface does not have any limiting consequences for the corresponding finite series in satellite geodesy as well as for the solution of the boundary value problem of physical geodesy if a finite set of observations is used. The usefulness of the multiples series of V for the study of secular variations of the gravity field is stressed. Publ. No. 49, Institut für Astronomische und Physikalische Geod?sie, Technische Hochschule München.  相似文献   

3.
    
For proper computation of the Stokes’ constants, or the evaluation of potential coefficients from terrestrial gravity data, surface free-air anomalies should be corrected to sea level. Such a correction is composed of two parts; the first, the Molodensky correction, G1, and a second, a term depending on the degree (n) and the expansion of (hΔg). This paper examines these terms numerically, computing for 1654 5° equal area blocks values of G1 and the total correction based on spherical harmonic expansions to degree 20. The largest correction found was 0.37 mgals. Corrections to potential coefficients caused by the anomaly correction were computed and compared to the original coefficients. The ratio between the coefficient corrections and the full coefficients generally increased by degree having a maximum ratio of 0.21 percent at degree 14 indicating that at the present time the corrections considered are negligible up to at least degree 20.  相似文献   

4.
The Everest spheroid, 1830, in general use in the Survey of India, was finally oriented in an arbitrary manner at the Indian geodetic datum in 1840; while the international spheroid, 1924, in use for scientific purposes; was locally fitted to the Indian geoid in 1927. An attempt is here made to obtain the initial values for the Indian geodetic datum in absolute terms on GRS 67 by least-square solution technique, making use of the available astro-geodetic data in India, and the corresponding generalised gravimetric values at the considered astro-geodetic points, as derived from the mean gravity anomalies over1°×1° squares of latitude and longitude in and around the Indian sub-continent, and over equal area blocks covering the rest of the earth’s surface. The values obtained independently by gravimetric method, were also considered before actual finalization of the results of the present determination.  相似文献   

5.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

6.
It is suggested that it would be worthwhile to determine the absolute value of the geopotential on the geopotential surface which corresponds to mean sea level. This number would replace the earth’s semi-major axis as the parameter which fixes the earth’s size; but slight variations in the parameter might be employed to study the dynamics of the sea. Fixing this number involves knowing the geopotential for a point on the orbit of a satellite whose true gravitational potential is also known.  相似文献   

7.
A non-conventional treatment of Stokes’integral enables significant simplification of formulas for both the regional and global contributions of the gravity field to the geoidal height.  相似文献   

8.
J. Li 《Journal of Geodesy》2005,79(1-3):64-70
Integral formulas are derived which can be used to convert the second-order radial gradient of the disturbing potential, as boundary values, into the disturbing potential, gravity anomaly and the deflection of the vertical. The derivations are based on the fundamental differential equation as the boundary condition in Stokes’s boundary-value problem and the modified Poisson integral formula in which the zero and first-degree spherical harmonics are excluded. The rigorous kernel functions, corresponding to the integral operators, are developed by the methods of integration.  相似文献   

9.
The concept of an idealised earth having 1° averaged heights over its land surface is introduced as a means to improve upon the existing geopotential coefficient solutions without the use of additional observed data, in order to provide more precise knowledge of the earth’s gravity field in the form of 1° global geoid and 1° mean free-air gravity anomalies especially over the mountainous regions with the visible topography condensed into the actual geoid, first by referring them to the idealised earth and then by reducing the same to the actual earth on applying appropriate corrections for the differences between the two earths.  相似文献   

10.
The problems of the earth’s gravity fields’ visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth’s gravity fields’ data is discussed in the paper by using LOD algorithm based on Quad Tree. First, this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids’ rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth’s gravity fields.  相似文献   

11.
The formulas of the ellipsoidal corrections to the gravity anomalies computed using the inverse Stokes integral are derived. The corrections are given in the integral formulas and expanded in the spherical harmonics series. If a coefficient model such as the OSU91A is given, the corrections can be easily computed. Received: 19 August 1996 / Accepted: 28 September 1998  相似文献   

12.
This study emphasizes that the harmonic downward continuation of an external representation of the Earth’s gravity potential to sea level through the topographic masses implies a topographic bias. It is shown that the bias is only dependent on the topographic density along the geocentric radius at the computation point. The bias corresponds to the combined topographic geoid effect, i.e., the sum of the direct and indirect topographic effects. For a laterally variable topographic density function, the combined geoid effect is proportional to terms of powers two and three of the topographic height, while all higher order terms vanish. The result is useful in geoid determination by analytical continuation, e.g., from an Earth gravity model, Stokes’s formula or a combination thereof.  相似文献   

13.
    
The methods of using earth satellites for determining the motion of the earth’s axis of rotation and of the earth’s principal axis of maximum inertia are discussed. Some simple formulae are also presented for evaluating the influence of various error sources in the orbital calculations on the pole coordinates and these offer some explanations of the frequencies found in the spectrum of the pole coordinates obtained by Anderle and Beuglass (1970). Initial calculations with existing laser data were attempted but the results were quite unsatisfactory due to the poor distribution of the data along the orbit. Some conclusions have however been drawn from these calculations that may be useful for future studies when better distributed data becomes available.  相似文献   

14.
The spherical harmonic coefficients of the Earth’s gravitational potential are conveniently determined by integration of gravity data or potential data (derived from satellite altimetry) over a sphere. The major problem of such a method is that the data, given on the non-spherical surface of the Earth, must be reduced to the sphere. A new integral formula over the surface of the Earth is derived. With this formula improved first order topographic corrections to the spherical formulas are obtained.  相似文献   

15.
    
When the values of gravity anomalies are given at the geoid, Ag can be calculated at altitude by application of Poisson’s integral theorem. The process requires integration of Δg multiplied by the Poisson kernel function over the entire globe. It is common practice to add to the kernel function terms that will ensure removal of any zeroth and first order components of Δg that may be present. The effects of trancating the integration at the boundary of a spherical cap of earth central half angle ψo have been analyzed using an adaptation of Molodenskii’s procedure. The extension process without removal terms retains the correct effects of inaccuracies in the constant term of the gravity reference model used in the definition of Δg. Furthermore, the effects of ignoring remote zones or unmapped areas in the integration process are very much smaller for the extension without removal terms than for the commonly used formula with removal terms. For these reasons the Poisson vertical extension process without removal terms is to be preferred over the extension with the zeroth order term removal. Truncation of this process at the point recommended for the Stokes integration, namely, the first zero crossing of the Stokes kernel function, leaves negligible truncation errors.  相似文献   

16.
The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9–10):491–504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and distributions of these effects.  相似文献   

17.
Regional geopotential model improvement for the Iranian geoid determination   总被引:1,自引:0,他引:1  
Spherical harmonic expansions of the geopotential are frequently used for modelling the earth’s gravity field. Degree and order of recently available models go up to 360, corresponding to a resolution of about50 km. Thus, the high degree potential coefficients can be verified nowadays even by locally distributed sets of terrestrial gravity anomalies. These verifications are important when combining the short wavelength model impact, e.g. for regional geoid determinations by means of collocation solutions. A method based on integral formulae is presented, enabling the improvement of geopotential models with respect to non-global distributed gravity anomalies. To illustrate the foregoing, geoid computations are carried out for the area of Iran, introducing theGPM2 geopotential model in combination with available regional gravity data. The accuracy of the geoid determination is estimated from a comparison with Doppler and levelling data to ±1.4m.  相似文献   

18.
The earth’s phase of rotation, expressed as Universal Time UT1, is the most variable component of the earth’s rotation. Continuous monitoring of this quantity is realised through daily single-baseline VLBI observations which are interleaved with VLBI network observations. The accuracy of these single-baseline observations is established mainly through statistically determined standard deviations of the adjustment process although the results of these measurements are prone to systematic errors. The two major effects are caused by inaccuracies in the polar motion and nutation angles introduced as a priori values which propagate into the UT1 results. In this paper, we analyse the transfer of these components into UT1 depending on the two VLBI baselines being used for short duration UT1 monitoring. We develop transfer functions of the errors in polar motion and nutation into the UT1 estimates. Maximum values reach 30 [μs per milliarcsecond] which is quite large considering that observations of nutation offsets w.r.t. the state-of-the-art nutation model show deviations of as much as one milliarcsecond.  相似文献   

19.
The application of Stokes’s formula to determine the geoid height requires that topographic and atmospheric masses be mathematically removed prior to Stokes integration. This corresponds to the applications of the direct topographic and atmospheric effects. For a proper geoid determination, the external masses must then be restored, yielding the indirect effects. Assuming an ellipsoidal layering of the atmosphere with 15% increase in its density towards the poles, the direct atmospheric effect on the geoid height is estimated to be −5.51 m plus a second-degree zonal harmonic term with an amplitude of 1.1 cm. The indirect effect is +5.50 m and the total geoid correction thus varies between −1.2 cm at the equator to 1.9 cm at the poles. Finally, the correction needed to the atmospheric effect if Stokes’s formula is used in a spherical approximation, rather than an ellipsoidal approximation, of the Earth varies between 0.3 cm and 4.0 cm at the equator and pole, respectively.  相似文献   

20.
The design and construction are described of an experimental strainmeter. This observes changes in the number of waves of light standing in a one-kilometer gap between points on the earth’s surface. Strain is observed over a frequency range of zero to several hundred hertz, to an accuracy of an arbitrarily-small fraction of a wave-length of light. Frequency-dependent phase and amplitude distortion are absent. As the read-out is of the nature of a servo device, dynamic range limitations are not encountered. The prototype instrument is located in a region affected by the world rift system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号