共查询到20条相似文献,搜索用时 78 毫秒
1.
The Impact of Global Warming on the Pacific Decadal Oscillation and the Possible Mechanism简 总被引:1,自引:0,他引:1
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker. 相似文献
2.
A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex.Such an impact is robust because of a qualitative consistency among the five AGCMs used.However,a significant difference exists in the modeled strengths,particularly in the stratosphere,with those in three of the AGCMs (CCM3,CAM3,and GFS) being four to five times as strong as those in the two other models (GFDL AM2,ECHAM5).As to which case reflects reality is an important issue not only for quantifying the role of tropical ocean warming in the recent modest recovery of the ozone hole over the Antarctic,but also for projecting its future trend.This issue is addressed in the present study through comparing the models' climatological mean states and intrinsic variability,particularly those influencing tropospheric signals to propagate upward and reach the stratosphere.The results suggest that differences in intrinsic variability of model atmospheres provide implications for the difference.Based on a comparison with observations,it is speculated that the impact in the real world may be closer to the modest one simulated by GFDL AM2 and ECHAM5,rather than the strong one simulated by the three other models (CCM3,CAM3 and GFS).In particular,IOW during the past 50 years may have dynamically induced a 1.0℃ warming in the polar lower stratosphere (~100 hPa),which canceled a fraction of radiative cooling due to ozone depletion. 相似文献
3.
In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertiliza- tion, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experi- ments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely fiom background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between irtdividual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of es- tablishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions. 相似文献
4.
An Assessment of Improvements in Global Monsoon Precipitation Simulation in FGOALS-s2简 总被引:5,自引:2,他引:5
The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulat ing global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-sl, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s 1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negatiw,' pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Nina years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Nifia years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical as cent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMR especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon. 相似文献
5.
An Observational Analysis of the Oceanic and Atmospheric Structure of Global-Scale Multi-decadal Variability简 总被引:5,自引:0,他引:5
The aim of the present study was to identify multi-decadal variability (MDV) relative to the current centennial global warming trend in available observation data.The centennial global wanning trend was first identified in the global mean surface temperature (STgm) data.The MDV was identified based on three sets of climate variables,including sea surface temperature (SST),ocean temperature from the surface to 700 m,and the NCEP and ERA40 reanalysis datasets,respectively.All variables were detrended and low-pass filtered.Through three independent EOF analyses of the filtered variables,all results consistently showed two dominant modes,with their respective temporal variability resembling the Pacific Decadal Oscillation/Inter-decadal Pacific Oscillation (PDO/IPO) and the Atlantic Multi-decadal Oscillation (AMO).The spatial structure of the PDO-like oscillation is characterized by an ENSO-like structure and hemispheric symmetric features.The structure associated with the AMO-like oscillation exhibits hemispheric asymmetric features with anomalous warm air over Eurasia and warm SST in the Atlantic and Pacific basin north of 10°S,and cold SST over the southern oceans.The Pacific and Atlantic MDV in upper-ocean temperature suggest that they are mutually linked.We also found that the PDO-like and AMO-like oscillations are almost equally important in global-scale MDV by EOF analyses.In the period 1975-2005,the evolution of the two oscillations has given rise to strong temperature trends and has contributed almost half of the STgm warming.Hereon,in the next decade,the two oscillations are expected to slow down the global warming trends. 相似文献
6.
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs. 相似文献
7.
In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vortex, the governing equations for the vortex were established in column coordinates with the balance of gradient wind. Based on this, the type of mixed waves and their dispersion characteristics were deduced by solving the linear model. Two numerical simulations with triple-nested domains--one idealized large-eddy simulation and one of a TPV that took place on 14 August 2006---were also carried out. The aim of the simulations was to validate the mixed wave deduced from the governing equations. The high-resolution model output data were analyzed and the results showed that the tangential flow field of the TPV in the form of center heating was cyclonic and convergent in the lower levels and anticyclonic and divergent in the upper levels. The simulations also showed that the vorticity of the vortex is uneven and might have shear flow along the radial direction. The changing vorticity causes the formation and spreading of vortex Rossby (VR) waves, and divergence will cause changes to the n~otion of the excitation and evolution of inertial gravity (IG) waves. Therefore, the vortex may contain what we call mixed :inertial gravity-vortex Rossby (IG-VR) waves. It is suggested that some strongly developed TPVs should be studied in the future, because of their effects on weather in downstream areas. 相似文献
8.
Mechanisms of Atlantic Meridional Overturning Circulation (AMOC) Variability in a Coupled Ocean–Atmosphere GCM简 总被引:1,自引:0,他引:1
The mechanisms involved in the variability of Atlantic Meridional Overturning Circulation (AMOC) are studied using a 2000-yr control simulation of the coupled Fast Ocean-Atmosphere Model (FOAM).This study identifies a coupled mode between SST and surface heat flux in the North Atlantic at the decadal timescale,as well as a forcing mode of surface heat flux at the interannual timescale.The coupled mode is regulated by AMOC through meridional heat transport.The increase in surface heating in the North Atlantic weakens the AMOC approximately 10 yr later,and the weakened AMOC in turn decreases SST and sea surface salinity.The decreased SST results in an increase in surface heating in the North Atlantic,thus forming a positive feedback loop.Meanwhile,the weakened AMOC weakens northward heat transport and therefore lowers subsurface temperature approximately 19 yr later,which prevents the AMOC from weakening.In the forcing mode,the surface heat flux leads AMOC by approximately 4 yr. 相似文献
9.
The regionalization of climate in China is based on a three-level classification in terms of lasting days for accumulated temperature (AT),aridity index,and July mean temperature.Based on daily meteorological observational data from 756 stations,trends and interdecadal variation in indices for classifying temperature zones,moisture regions and climatic subregions in the period 1961-2010 are discussed.Results reveal that the nationwide AT ≥ 10℃C (AT10) and its lasting days are basically increasing,while aridity in northern Xinjiang is decreasing.The increasing trend of July mean temperature in North China is found to be notably larger than in South China.In terms of their national averages,a marked step increase of AT10 and its lasting period,as well as July mean temperature occurred around 1997,while the aridity index presents no such clear change.By comparing regionalization areas for 1998-2010 with those for 1961-97,it is found that the semi-humid,semi-dry and dry regions in the sub-temperate zone,as well as the humid region in the middle subtropical zone,have experienced substantial shrinkage in terms of area.In contrast,the areas of semi-dry and dry regions in the warm temperate zone,as well as the humid region in the south subtropical zone,present drastically increasing trends.Owing to the influence of such step changes that took place in 1997,that particular point in time should be given close attention in future studies regarding the regionalization of climate in China. 相似文献
10.
Robustness of Precipitation Projections in China: Comparison between CMIP5 and CMIP3 Models简 下载免费PDF全文
Three sources of uncertainty in model projections of precipitation change in China for the 21st century were separated and quantified: internal variability,inter-model variability,and scenario uncertainty.Simulations from models involved in the third phase and the fifth phase of the Coupled Model Intercomparison Project(CMIP3 and CMIP5) were compared to identify improvements in the robustness of projections from the latest generation of models.No significant differences were found between CMIP3 and CMIP5 in terms of future precipitation projections over China,with the two datasets both showing future increases.The uncertainty can be attributed firstly to internal variability,and then to both inter-model and internal variability.Quantification analysis revealed that the uncertainty in CMIP5 models has increased by about 10%–60% with respect to CMIP3,despite significant improvements in the latest generation of models.The increase is mainly due to the increase of internal variability in the initial decades,and then mainly due to the increase of inter-model variability thereafter,especially by the end of this century.The change in scenario uncertainty shows no major role,but makes a negative contribution to begin with,and then an increase later. 相似文献
11.
The mixed layer is deep in January–April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth(MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21 st century the mixed layer will shoal, and the MLD reduction will be most pronounced in spring at about 33?N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate. 相似文献
12.
Based on an eddy permitting ocean general circulation model, the response of water masses to two distinct climate scenarios in the South Pacific is assessed in this paper. Under annually repeating atmospheric forcing that is characterized by different westerlies and associated heat flux, the response of Subantarctic Mode Water(SAMW) and Antarctic Intermediate Water(AAIW) is quantitatively estimated. Both SAMW and AAIW are found to be warmer, saltier and denser under intensified westerlies and increased heat loss. The increase in the subduction volume of SAMW and AAIW is about 19.8 Sv(1 Sv =10~6m~3s~(-1)). The lateral induction term plays a dominant role in the changes in the subduction volume due to the deepening of the mixed layer depth(MLD). Furthermore, analysis of the buoyancy budget is used to quantitatively diagnose the reason for the changes in the MLD. The deepening of the MLD is found to be primarily caused by the strengthening of heat loss from the ocean to the atmosphere in the formation region of SAMW and AAIW. 相似文献
13.
Most climate models project a weakening of the Walker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall–moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise(anti-clockwise) circulation anomaly in the upper(lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger(smaller) rate of increase of diabatic heating than static stability in the upper(lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument. 相似文献
14.
Observations show that the tropical E1 Nifio-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models. 相似文献
15.
Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary. 相似文献
16.
Huang Jiayou 《大气科学进展》2000,17(2):184-192
To reveal climatic variation over North China, the climatic jumps in summer in Beijing are analyzed using the data of precipitation of summer (June, July, August) during the period of 1841-1993, in which those missed before 1950 were reconstructed by the stepwise regression method with minimum forecast error. The climatic jumps at different scales are analyzed using different diagnostic methods with different decade (10-100 years) windows. Some new methods and ideas are proposed. The variance difference, the linear tendency difference, and the difference of power spectral distribution between the samples before and after the period at the moving point in the center of the series are compared with other methods (for example, Mann-Kendall test, t-test, and accumulative anomaly etc.). Considering the differences among the statistics above, a synthetic jump index is also proposed in order to get the definite jump points in the moving series. The results show that the climatic jumps in the area occurred in the 1890’s, the 1910s and the 1920s, and mostly in the 1920s, which suggests that the local climatic jumps in North China have a simultaneous response to the global warming in the hundred-year scales. 相似文献
17.
18.
Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models 总被引:1,自引:0,他引:1
Valentina Radić Andrew Bliss A. Cody Beedlow Regine Hock Evan Miles J. Graham Cogley 《Climate Dynamics》2014,42(1-2):37-58
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection. 相似文献
19.
G. A. Meehl P. R. Gent J. M. Arblaster B. L. Otto-Bliesner E. C. Brady A. Craig 《Climate Dynamics》2001,17(7):515-526
Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations.
Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models
have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It
is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino
variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity,
stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic
east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific
has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does
not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability
of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward
into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant
power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The
TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of
3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern
Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC
time series of the first EOFs of near-global SSTs in the models and observations.
Received: 17 April 2000 / Accepted: 17 August 2000 相似文献
20.
Idealized forcing experiments with 1% per year CO2 increase to stabilized doubled and quadrupled CO2, twenty-first century transient scenario experiments (SRES scenarios A1B and B1), and stabilized twenty-second century A1B and B1 experiments with two global coupled climate models (PCM and CCSM3) are analyzed for possible future changes of El Niño events. With increased CO2 in the models, there is a reduction of amplitude of El Niño events. This is particularly apparent with larger forcing in the stabilized 4×CO2 experiment in PCM and the stabilized greenhouse gas A1B experiment in CCSM3, where the reduction of amplitude is outside the range of the inherent multi-century variability of El Niño in the control runs of the models and is statistically significant. With moderately increased forcing (stabilized 2×CO2 in PCM and the stabilized B1 experiment in CCSM3), the reduction in amplitude is evident, but it is not significant. The change in El Niño behavior with larger forcing is attributed to the change in base state temperature in the equatorial Pacific, which is similar with increased greenhouse gases (GHGs) in both models. Positive temperature anomalies in and below the thermocline, associated with a reduction of the trade winds, and weakened Pacific Ocean subtropical cells, produce a less intense thermocline, and consequently lower amplitude El Niño events. The previously noted intensification of El Niño tropical precipitation anomalies in a warmer mean base state that applied when there was no appreciable change in El Niño amplitude does not hold in the present study where the El Niño events decrease in magnitude in a future warmer climate. North American surface temperature anomalies associated with El Niño are reduced and become less significant in the future events, with the anomalously deepened Aleutian low in the North Pacific weakened and moved eastward with greater radiative forcing. Part of this is attributed to the smaller amplitude events and thus lower amplitude teleconnections as indicated by contrasting composites of medium and high amplitude El Niño events from the control runs. The change in midlatitude base state circulation also contributes to the change in El Niño teleconnections. The effects of this change in base state on the weakened El Niño teleconnections over North America are confirmed in sensitivity experiments with a version of the atmospheric model in which heating anomalies are specified to mimic El Niño events in a base state changed due to increased GHGs. 相似文献