首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
李彦荣 《天文学报》2012,53(3):259-260
自转作为描述黑洞天体物理性质的两个基本参数之一,其研究正方兴未艾.本文以星系中心超大质量黑洞(SMBH)的自转为研究主题,阐述自转的确定、宇宙学演化及其对黑洞吸积历史的限制.SMBH附近的加速机制使粒子产生甚高能量的辐射,对这些辐射的观测可以给出中心黑洞的信息.基于此,我们提出了利用TeV光变限制黑洞自转参数的方法.基本原理是:TeV光变给出了辐射区域最大尺度的限制,吸积盘辐射场通过对TeV光子的吸收光深给出了辐射区域最小尺度的限制.由于吸积盘辐射场与黑洞自转直接相关,从而结合TeV光变可以限制黑洞自转.对于给定的光度,快  相似文献   

2.
围绕着恒星级黑洞的中微子主导吸积盘可以通过盘上发出的中微子湮灭为伽玛暴提供能量。对于黑洞超吸积系统,吸积可能引起黑洞特征的极大演化,这会进一步引起中微子光度的演化。考虑不一样的平均吸积率和初始黑洞参数,通过吸积系统的演化分析中微子湮灭光度和总的中微子湮灭能量随时间的变化。同时计算了短暴GRB 090510的中微子湮灭能量并与理论预测的结果比对,发现中微子主导吸积盘的中微子湮灭能量的理论预测值远高于观测值,意味着这种模型可能提供GRB 090510爆发所需要的能量。  相似文献   

3.
为统一解释伽玛射线暴(简称伽玛暴)与暴后再活动,提出了一个新的伽玛暴中心引擎模型一“奇异星-NDAF”模型(NDAF:Neutrino Dominated Accretion Flow,中微子主导吸积流),并计算了奇异星周围NDAF的结构.与其他中心致密天体不同的是,奇异星会向吸积流反馈以中微子为载体的奇异化相变能量.不考虑NDAF与奇异星的摩擦,结果表明:奇异星周围NDAF的结构对吸积率非常敏感;当吸积率大于0.18 Mo.S-1时,“奇异星-NDAF”模型能统一解释伽玛暴与暴后再活动,这个范围大于无摩擦的“中子星-NDAF”模型能统一解释的范围;在统一解释的情形下, “奇异星-NDAF”模型湮灭总能量的分布非常宽阔,当吸积率大于0.3 M0.S--1时,湮灭总能量大于1051 erg;最后,当吸积率大于0.3 M0.S-1时,“奇异星-NDAF”模型的湮灭光度超过同等吸积率下“黑洞-NDAF”模型一个多量级,有利于解释某些光度极大的伽玛暴.  相似文献   

4.
通过几十年的观测研究, 黑洞X射线双星(X-Ray Binary, XRB)部分特征被揭示. 然而, 吸积盘结构尚不确定. 黑洞XRB功率密度谱的截断频率与准周期振荡(Quasi Periodic Oscillation, QPO)的相关性质(W-K关系)可以限制吸积盘结构. 利用慧眼-HXMT (Hard X-ray Modulation Telescope)观测到的5个黑洞XRB的数据, 对黑洞XRB的W-K关系进行了研究, 结果表明在慧眼-HXMT观测的3个探测器能段中W-K关系成立. 此外在MAXI J1535-571之中存在截断频率和吸积盘内半径的相关关系, 这和截断的吸积盘结构一致. 如果观测到的功率密度谱来自质量吸积率的扰动传播, 可以推测吸积盘内半径接近最内圆形稳定轨道, 此黑洞可能是高自旋系统.  相似文献   

5.
暗物质空间探测器BGO量能器的读出设计   总被引:2,自引:0,他引:2  
暗物质空间探测器是中国科学院紫金山天文台暗物质空间天文实验室提出的,其目的是为了探测暗物质粒子湮灭可能产生的高能电子和伽玛粒子.整个探测器主要由BGO(Bismuth germanate,锗酸铋)高能图像量能器和闪烁体径迹探测器构成.探测器的能量探测范围将覆盖10 GeV到10 TeV的高能电子和伽玛粒子,其中高能粒子的能量主要沉积在BGO量能器中.为了验证探测器方案,紫金山天文台暗物质空间天文实验室设计了暗物质空间探测器BGO量能器的读出系统原型,并对其进行了初步的测试.  相似文献   

6.
夏子晴 《天文学报》2021,62(2):21-112
目前已经有很多观测证据表明宇宙中存在着大量暗物质,其能量密度占据了目前宇宙总能量密度的1/4.根据高精度的数值模拟和引力透镜观测,我们已经对从矮星系到星系团中的暗物质空间分布有了较好的理解,但是对于暗物质究竟是什么我们还一无所知.由此,物理学家提出了很多假想的粒子模型.  相似文献   

7.
为解释毫秒脉冲星自转周期的观测数据和理论结果之间的差异,采用数值分析的方法研究了小质量X射线双星中中子星的自转演化.在计算中,分别考虑了辐射压和中子星辐照引起的物质交流的不稳定性对系统的影响.结果如下:(1)吸积盘内的辐射压会使自转周期有小幅增加,中子星辐照导致的物质传输率的变化会缩短演化路径中自转减慢的阶段;(2)同时考虑辐射压和中子星辐照时在物质传输的高态阶段吸积会被辐射压抑制;(3)吸积的质量和快参数影响达到自转平衡的系统数目.  相似文献   

8.
本文指出,计算Kerr黑洞角动量应考虑散射电子的逆向吸积效应.同时提出用顺、逆向粒子的最小圆轨道半径作为黑洞俘截粒子的有效截面重要标志,从而大大简化了问题的计算。对K.S.Thorne的结果,本文给出了几种修正.  相似文献   

9.
暗物质空间探测器是中国科学院紫金山天文台空间实验室提出的,其目的是为了探测暗物质粒子湮灭可能产生的高能电子和伽玛粒子.BGO量能器是暗物质粒子探测卫星主要载荷之一,高能粒子的能量主要沉积在BGO量能器中.为了使探测器覆盖5 GeV~10T'eV的探测范围,要求每个BGO探测单元具有约1.5×10~5的动态范围.为了对这一大动态范围的探测单元进行测试,提出一种比较简易的线性测试方法,并在实验室构建一个相应的测试系统,对BGO量能器探测单元读出系统的线性进行测试.测试结果表明BGO量能器探测单元读出的非线性度好于2.7%.  相似文献   

10.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

11.
The interior of neutron stars consists of the densest, although relatively cold, matter known in the universe. Here, baryon number densities might reach values close to ten times the nuclear saturation density. These suggest that the constituents of neutron star cores not only consist of nucleons, but also of more exotic baryons like hyperons or a phase of deconfined quarks. We discuss the consequences of such exotic particles on the gross properties and phenomenology of neutron stars. In addition, we determine the general phase structure of dense and also hot matter in the chiral parity-doublet model and confront model results with the recent constraints derived from the neutron star merger observation.  相似文献   

12.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

13.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

14.
We consider star models consisting of spin 0 particles interacting only gravitationally, e.g. Higgs-particles as possible dark matter objects. The particle gas of finite temperature is treated according to the Bose-Einstein-statistics in its non- relativistic limit; then the use of Newtonian gravity is sufficient too. The limits of these restrictions are estimated. The local temperature is determined with the use of energy conservation. The mass-radius relation of the objects and their further behaviours as Bose-Einstein-condensation in the outer regions are calculated. We find strong similarities with the features of white dwarfs and neutron stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

16.
We discuss the nature of the various modes of pulsation of superfluid neutron stars using comparatively simple Newtonian models and the Cowling approximation. The matter in these stars is described in terms of a two-fluid model, where one fluid is the neutron superfluid, which is believed to exist in the core and inner crust of mature neutron stars, and the other fluid represents a conglomerate of all other constituents (crust nuclei, protons, electrons, etc.). In our model, we incorporate the non-dissipative interaction known as the entrainment effect, whereby the momentum of one constituent (e.g. the neutrons) carries along part of the mass of the other constituent. We show that there is no independent set of pulsating g-modes in a non-rotating superfluid neutron star core, even though the linearized superfluid equations contain a well-defined (and real-valued) analogue to the so-called Brunt–Väisälä frequency. Instead, what we find are two sets of spheroidal perturbations whose nature is predominately acoustic. In addition, an analysis of the zero-frequency subspace (i.e. the space of time-independent perturbations) reveals two sets of degenerate spheroidal perturbations, which we interpret to be the missing g-modes, and two sets of toroidal perturbations. We anticipate that the degeneracy of all these zero-frequency modes will be broken by the Coriolis force in the case of rotating stars. To illustrate this we consider the toroidal pulsation modes of a slowly rotating superfluid star. This analysis shows that the superfluid equations support a new class of r-modes, in addition to those familiar from, for example, geophysical fluid dynamics. Finally, the role of the entrainment effect on the superfluid mode frequencies is shown explicitly via solutions to dispersion relations that follow from a 'local' analysis of the linearized superfluid equations.  相似文献   

17.
If the dark matter particle is a neutralino, then the first structures to form are cuspy cold dark matter (CDM) haloes collapsing after redshifts   z ≈ 100  in the mass range  10−6–10−3 M  . We carry out a detailed study of the survival of these microhaloes in the Galaxy as they experience tidal encounters with stars, molecular clouds, and other dark matter substructures. We test the validity of analytic impulsive heating calculations using high-resolution N -body simulations. A major limitation of analytic estimates is that mean energy inputs are compared to mean binding energies, instead of the actual mass lost from the system. This energy criterion leads to an overestimate of the stripped mass and an underestimate of the disruption time-scale, since CDM haloes are strongly bound in their inner parts. We show that a significant fraction of material from CDM microhaloes can be unbound by encounters with Galactic substructure and stars; however, the cuspy central regions remain relatively intact. Furthermore, the microhaloes near the solar radius are those which collapse significantly earlier than average and will suffer very little mass-loss. Thus, we expect a fraction of surviving bound microhaloes, a smooth component with narrow features in phase space, which may be uncovered by direct detection experiments, as well as numerous surviving cuspy cores with proper motions of arcminutes per year, which can be detected indirectly via their annihilation into gamma-rays.  相似文献   

18.
Astrophysical limits on massive dark matter   总被引:1,自引:0,他引:1  
Annihilations of weakly interacting dark matter particles provide an important signature for the possibility of indirect detection of dark matter in galaxy haloes. These self-annihilations can be greatly enhanced in the vicinity of a massive black hole. We show that the massive black hole present at the centre of our galaxy accretes dark matter particles, creating a region of very high particle density. Consequently the annihilation rate is considerably increased, with a large number of e+e pairs being produced either directly or by successive decays of mesons. We evaluate the synchrotron emission (and self-absorption) associated with the propagation of these particles through the galactic magnetic field, and are able to constrain the allowed values of masses and cross sections of dark matter particles.  相似文献   

19.
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscillations of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian axisymmetric background configurations and account for the presence of superfluid components via the standard two-fluid model. Within the Cowling approximation, we are able to carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime, where the star is significantly deformed by the centrifugal force. For simplicity, we focus on background models where the two fluids (superfluid neutrons and protons) corotate, are in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of rotating stars for two analytical model equations of state. These models represent relatively simple generalizations of single fluid, polytropic stars. We study the effects of entrainment, rotation and symmetry energy on non-radial oscillations of these models. Our results show that entrainment and symmetry energy can have a significant effect on the rotational splitting of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode frequencies considerably in the regime of fast rotation.  相似文献   

20.
In an effort to study the halo globular clusters we perform a simulation of inhomogeneous halo collapse using a SPH/N-body code. We include dark matter particles, (cooling) gas, and stars. Supernova feedback is included as a heat source for the gas in the local environment of star forming regions. We find this model cannot reproduce the age distribution and spatial distribution of halo globular clusters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号