首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
1679年三河-平谷8级地震破裂带的大地切片实验研究   总被引:2,自引:1,他引:1  
何宏林  闵伟  原口强 《地震地质》2008,30(1):289-297
大地切片调查法,就是在不搅动的状态下从地下切出未固结的第四纪浅部地层的垂直断片,它是一种较新的活动断层探测技术。发生在1679年9月2日的三河-平谷8级地震(烈度Ⅺ),是北京及附近地区历史上记录到的最大地震。在该地震的宏观震中——潘各庄附近,运用大地切片调查法对该地震破裂带进行了实验性探测,获得了较好的效果。实验研究表明:大地切片保留了完好的沉积细结构特征;大地切片调查实施时,要选择合适的动力源,对于北京平原这种黏土含量较高的沉积层,挖掘机加振动锤的动力组合优于吊车加振动锤的动力组合;大地切片由于振动会造成一定地层厚度的压缩,但黏土含量较高的北京地区,压缩比例基本<5%。另外,结合探槽和大地切片的对比分析,揭示了最近2次古地震事件,分别是1679年事件和该地震之前的一次事件,两次地震的垂直同震位移分别是1·4m和1·2m  相似文献   

2.
三河—平谷8级地震区的构造背景与大震重复性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过综合探测研究,查明了1679年三河—平谷8级大震是发生在具有深部构造背景的活动断裂交汇区;北东向新夏垫断裂是其发震断裂并呈右旋剪切破裂位错,潘各庄一带垂直位移最大(达3.16米)应为8级地震的宏观震中。由平均地震位错速率及一定震级地震的位错量估计,夏垫断裂带上极震区范围内7.5级、7.0级和6.5级地震的平均重复时间下限值分别为3800年、1750年和800年  相似文献   

3.
新疆于田M<‘s>7.3地震发生在西昆仑块体与昆仑-柴达木-祁连块体之间的阿尔金断裂西南端NE向张剪切段邻近区域,也是阿尔金断裂、康西瓦断裂和昆仑断裂带西端玛尔盖茶卡断裂等交会部位,对理解青藏高原的变形及其动力学演化过程具有十分重要的作用.高分辨率卫星影像解译和野外考察表明,于田地震在阿什库勒火山群南部玉龙喀什河源头近...  相似文献   

4.
1303年山西洪洞8级地震地表破裂带di   总被引:6,自引:0,他引:6       下载免费PDF全文
综合20世纪90年代初在霍山山前断裂和近年在绵山西侧断裂和太谷断裂获取的最新调查资料,讨论了1303年山西洪洞8级地震地表破裂带的展布和位移特征. 如果太谷断裂、绵山西侧断裂与霍山山前断裂在1303年洪洞地震中同时活动,则该次地震的地表破裂带长163 km,分为3段,即霍山山前断裂段、绵山西侧断裂段和太谷断裂段. 各段长度分别为50,35和70 km,3段之间存在4和8 km的阶区. 该地震地表破裂带具右旋走滑特征,北段和中段右旋走滑位移量6~7 m,南段最大为10 m. 在山西断陷带盆地边界的单条断裂一般只对应7级地震,而该次8级特大地震则突破两个盆地之间的障碍体,显示了强震地表破裂尺度的可变特征.   相似文献   

5.
大比例尺地震地表破裂带精细填图是研究强震破裂特征及机理的关键数据,为理解破裂动态过程提供重要的观测约束.青藏高原中西部的强震地表破裂研究因发震地点偏远不易到达而成为薄弱环节.文章利用无人机航拍新技术,详细解译获得了2014年于田Ms7.3地震地表破裂展布图.此次地震在阿尔金断裂西段南硝尔库勒断裂(南段S1)、硝尔库勒断裂(中段S2)以及阿什库勒断裂(北段S3)上分别产生了16、6.9和14.2km的地表破裂.南段平均左旋位错为(52±25)cm,最大为~90cm;北段平均左旋位错为(36±21)cm,最大为~84cm.共统计了5308处裂缝宽度,南段平均宽度为(85±71)cm,最宽可达~700cm;中段平均宽度为(39±21)cm,最宽可达243cm;北段平均宽度为(61±44)cm,最宽可达~340cm.另外,南段平均拉张量为(3.4±2.9)m,最大可达~17m;中段平均拉张量为(4.3±3.6)m,最大为~13m;北段平均拉张量为(1.7±1.6)m,最大为~6m.平均裂缝宽度和拉张量在弯曲和阶区部位均显示衰减的趋势.于田地震和其他全球走滑型地震的地表破裂在弯曲、阶区、断裂分叉等断裂几何复杂部位的宽度大于平直段,表明断裂几何结构对破裂宽度具有明显的控制作用.硝尔库勒与南硝尔库勒断裂锐角相交区域发育的大量裂缝可能指示构造拉张部位对近断裂分布式变形的控制,为地震动态破裂的数值模拟提供了观测约束.于田地震还造成罕见的大量伴生地震震动地表破坏,在地震震动的影响下含水盐层可能触发了缓坡度洪积扇的失稳,形成了密集的滑坡和地堑系.这些分布式变形以及浅表伴生变形是地震破裂扩展过程与断裂几何结构耦合关系的直接响应,并暗示破裂在穿过阶区后可能在阿什库勒断裂上双向扩展.  相似文献   

6.
7.
研究了2008年汶川大地震的发震构造龙门山构造带的北段,即北川-南坝-林庵寺断裂的地表破裂.通过黄家坝、桂溪、平通、南坝、石坎子等地的考察和测量,显示该段地表破裂沿断裂带连续分布,走向为N45°~65°E.垂直位错与水平位错比值从西南段黄家坝的2.8:1逐渐降低到北东段南坝、石坎子的0.9:1.地表破裂特征表明,断裂以右旋走滑分量为主,并具有较高的逆冲分量.余震分布表明,青川断裂与北川-南坝-林庵寺断裂之间可能存在隐伏活动断裂.  相似文献   

8.
1411年西藏当雄南8级地震地表破裂   总被引:3,自引:1,他引:3       下载免费PDF全文
吴章明  申屠烟明 《地震地质》1990,12(2):98-108,T002
1411年9月29日西藏当雄南发生八级强烈地震,产生了一条长达136km的地震地表破裂带。该破裂带由两条走向、运动方式不同的次级破裂构成,最大垂直位移8—9m,最大水平位移11—13m,是一条不连续的张剪性破裂带。本文总结了该破裂带的几何和位移特征,并讨论了1411年地震的发震构造  相似文献   

9.
根据马衔山北缘断裂西北段1/10000条带状地质填图和史料考证资料,对兰州1125年7级地震的极震区范围、发震断层、地表破裂类型及分布特征进行了讨论。结果表明,该次地震的极震区范围位于兰州市及其西南,震中在咸水沟一带,发震断层为马衔山北缘断裂西北段咸水沟—马泉沟小段。该次地震形成了长约7km,宽300~1000m的地表破裂,其破裂类型有地震断层、地震陡坎、地震裂缝、地震滑坡、地震陷坑等。其中可细分为2小段,东南小段为麦地湾—咸水沟段,由两条平行的地表破裂组成;西北小段为大马家滩—马泉沟段,由单条地表破裂组成。根据大比例尺平、剖面图实测,该次地震的左旋位移量2.4~2.5m,垂直位移量0.45~0.92m。文章最后,对地震的构造背景进行了讨论  相似文献   

10.
2022年1月8日,青海省海北藏族自治州门源县发生MS6.9地震,震中位于青藏高原东北缘地区祁连—海原断裂带的冷龙岭断裂和托勒山断裂构造转换区域(37.77°N,101.26°E)。震后野外现场考察结果表明,此次地震形成的同震地表破裂带总长度约为26 km,整体走向NWW向,破裂性质以左旋走滑局部逆冲为主。断层错动造成的破坏形式以雁列式组合的张裂隙、张剪裂隙、挤压鼓包、断层陡坎等为主。其中,道河至硫磺沟段地表破裂最为强烈,规模大且连续性好,造成的震害最为显著,地表破裂规模向东、西两端逐渐衰减。破裂带穿过区域内多条河流,造成显著的冰面破裂变形,并沿河岸形成一系列的边坡崩塌、滚石等地质灾害。综合破裂带及震害规模分析,宏观震中位于道河至硫磺沟地区。  相似文献   

11.
The great Sanhe-Pinggu M8 earthquake occurred in 1679 was the largest surface rupture event recorded in history in the northern part of North China plain. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method. Based on the assumption that clustered small earthquakes often occur in the vicinity of fault plane of large earthquake, and referring to the morphology of the long axis of the isoseismal line obtained by the predecessors, we selected a strip-shaped zone from the relocated earthquake catalog in the period from 1980 to 2009 to invert fault plane parameters of this earthquake. The inversion results are as follows: the strike is 38.23°, the dip angle is 82.54°, the slip angle is -156.08°, the fault length is about 80 km, the lower-boundary depth is about 23 km and the buried depth of upper boundary is about 3 km. This shows that the seismogenic fault is a NNE-trending normal dip-slip fault, southeast wall downward and northwest wall uplift, with the right-lateral strike-slip component. Moreover, the surface rupture zone, intensity distribution of the earthquake and seismic-wave velocity profile in the focal area all verified our study result.  相似文献   

12.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. Foundation item: Joint Earthquake Science Foundation of China (201001). Contribution No. RCEG200305, Research Center of Exploration Geophysics, China Earthquake Administration.  相似文献   

13.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

14.
2020年7月12日唐山5.1级地震分析   总被引:2,自引:1,他引:1       下载免费PDF全文
王想  周依  陈婷  王时  李小军 《地震工程学报》2021,43(6):1280-1287
对2020年7月12日唐山5.1级地震的发震特点、地震的性质、发震构造以及破裂机制进行初步分析,推测唐山断裂可能为其控震断裂.地震前唐山地区和震中所处的华北构造区的地震活动性异常以缺震和显著平静为主,表明该区域地壳应力积累到了一定程度.分析认为:此次唐山5.1级地震属于1976年7月28日唐山7.8级大震震区内的地震起...  相似文献   

15.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

16.
2021年5月22日青海省玛多县发生M_S7.4地震,数小时后在距离震中两百多公里的甘肃玛曲县发生了M_S4.4地震。利用甘肃、青海和四川区域测震台网记录的三分向宽频带数字波形资料,反演甘肃玛曲M_S4.4地震的震源机制解,结果显示此次地震活动面走向、倾角和滑动角分别为105.6°、74.1°和-38.7°。参考玛多M_S7.4地震的震源机制解,发现两次地震震源机制解具有较好的一致性,均呈现明显的左旋走滑特征。静态库伦破裂应力改变量分布计算结果表明,玛曲M_S4.4地震震中位置单位面积(m~2)受到来自玛多地震震中方向的拉应力约为0.02 MPa。综合两次地震的震中距、发震时刻和断层分布等情况,初步判断甘肃玛曲M_S4.4地震应为青海玛多M_S7.4强震的一次触发地震。  相似文献   

17.
以中国静止气象卫星亮温资料为数据基础,使用小波变换和功率谱估计法研究2022年1月8日门源M6.9地震前的热辐射异常,并对祁连带中东段以往震例的热辐射异常作回溯性研究。门源6.9级地震的热辐射异常发展过程可分为3个阶段:初始演化阶段、增强持续阶段、减弱消失阶段。面积最大时强辐射区的面积约为8万km~2,地震发生在其西北部。相对功率谱峰值为平均值的17倍,地震发生在峰值后82天。大面积、高强度的热辐射状态持续时间长是此次异常的显著特点。祁连带中东段的几次地震前均出现过热辐射异常,其特征可为该区震情判定不断积累经验,以期形成可作为判定指标的区域震例库。  相似文献   

18.
2016年11月25日新疆阿克陶地区发生的MW6.6地震,对当地人民生命造成一定的危害。基于Sentinel-1数据获取该地震的视线向同震形变场,采用贝叶斯方法反演单一断层走向为106.9°、倾角为73.8°、震源深度为17.35 km,在此断层几何模型基础上,以最速下降梯度法(Steepest Descent Method,SDM)反演滑动分布,结果表明断层面上存在两个滑动峰值,其中位于断层西侧的最大滑动量为0.66 m,深度为11.7 km,位于断层东侧的最大滑动量为0.83 m,深度为7.5 km,根据反演结果模拟LOS形变,其最大残差为~5 cm。构建倾角分别为70.79°和55.33°的双断层几何模型,并根据双断层几何模型反演了滑动分布,结果表明单一断层模型与双断层模型的滑动分布具有一致性,但是最大滑动量值有所不同,相对于单一断层模型的滑动分布而言,双断层模型的滑动量在西侧增大,其值为0.68 m;而在东侧减小,其值为0.77 m;最大残差降低了约2 cm。双断层模型库伦应力增加区域与余震的分布比较吻合。  相似文献   

19.
An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号