首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M > 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.  相似文献   

2.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

3.
《Gondwana Research》2014,25(2):614-629
The Gridino Complex represents one of the oldest eclogite-facies terranes on Earth. It consists of blocks, boudins and lenses of eclogites, pyroxenites, and epidosites as well as deformed eclogitized dikes within biotite-amphibole gneisses. Detailed petrological studies of the pyroxenites and different types of eclogites reveal considerable diversity in metamorphic pressure (P) – temperature (T) conditions (from 1.3 GPa at 660 °C to 3.0 GPa at 660 °C) and fluid regimes (wet vs. dry) experienced by these rocks. Dike-related rocks escaped prograde metamorphism and reached higher pressures than the lenses and blocks that experienced considerable prograde metamorphic reworking. The variability in P–T conditions and the shapes of P–T paths are in agreement with the results of thermomechanical modeling and data from (U)HP metamorphic rocks exhumed during continent–continent collision in the Phanerozoic. The T/P ratio estimated for an eclogitized dike from Eclogitovii Island of the Gridino Complex corresponds to the gradients of < 350 °C/GPa attributed to high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic belts, which are often considered as representative of modern style plate tectonics operating in the Phanerozoic Eon. The data presented in this paper suggest that occurrences of HP-UHP metamorphic terrains might be extended back towards the time of either the assembly of Columbia in the Paleoproterozoic or Kenorland in the Neoarchean.  相似文献   

4.
《Gondwana Research》2014,25(3):1202-1215
The South China Block, consisting of the Yangtze and the Cathaysia blocks, is one of the largest Precambrian blocks in eastern Asia. However, the early history of the Cathaysia Block is poorly understood due largely to intensive and extensive reworking by Phanerozoic polyphase orogenesis and magmatism which strongly overprinted and obscured much of the Precambrian geological record. In this paper, we use the detrital zircon U–Pb age and Hf isotope datasets as an alternative approach to delineate the early history of the Cathaysia Block. Compilation of published 4041 Precambrian detrital zircon ages from a number of (meta)sedimentary samples and river sands exhibits a broad age spectrum, with three major peaks at ~ 2485 Ma, ~ 1853 Ma and ~ 970 Ma (counting for ~ 10%, ~ 16% and ~ 24% of all analyses, respectively), and four subordinate peaks at ~ 1426 Ma, ~ 1074 Ma, ~ 780 Ma and ~ 588 Ma. Five of seven detrital zircon age peaks are broadly coincident with the crystallisation ages of ~ 1.89–1.83 Ga, ~ 1.43 Ga, ~ 1.0–0.98 Ga and ~ 0.82–0.72 Ga for known igneous rocks exposed in Cathaysia, whereas, igneous rocks with ages of ~ 2.49 Ga and ~ 0.59 Ga have not yet been found. The Hf isotopic data from 1085 detrital zircons yield Hf model ages (TDMC) between ~ 4.19 Ga and ~ 0.81 Ga, and the calculated εHf(t) values between − 40.2 and 14.4. The Archean detrital zircons are exclusively oval in shape with complicated internal textures, indicating that they were sourced by long distance transportations and strong abrasion from an exotic Archean continent. In contrast, the majority of detrital zircons in age between ~ 1.9 and ~ 0.8 Ga are euhedral to subhedral crystals, indicative of local derivation by short distance transportations from their sources. The oldest crustal basement rocks in Cathaysia were most likely formed by generation of juvenile crust and reworking of recycled Archean components in Late Paleoproterozoic at ~ 1.9–1.8 Ga, rather than in the Archean as previously speculated. Reworking and recycling of the continental crust are likely the dominant processes for the crustal evolution of Cathaysia during the Mesoproterozoic to Neoproterozoic time, with an intervenient period of significant generation of juvenile crust at ~ 1.0 Ga.Precambrian crustal evolutions of the Cathaysia Block are genetically related to the supercontinent cycles. By comparing detrital zircon data from Cathaysia with those for other continents, and integrating multiple lines of geological evidence, we interpret the Cathaysia Block as an orogenic belt located between East Antarctica, Laurentia and Australia during the assembly of supercontinent Columbia/Nuna at ~ 1.9–1.8 Ga. The Cathaysia Block amalgamated with the Yangtze Block to form the united South China Block during the Sibao Orogeny at ~ 1.0–0.89 Ga. The Laurentia–Cathaysia–Yangtze–Australia–East Antarctica connection gives the best solution to the paleo-position of Cathaysia in supercontinent Rodinia. The significant amount of ~ 0.6–0.55 Ga detrital zircons in Cathaysia and West Yangtze have exclusively high crustal incubation time of > 300 Ma, indicating crystallisation from magmas generated dominantly by crustal reworking. This detrital zircon population compares well with the similar-aged zircon populations from a number of Gondwana-derived terranes including Tethyan Himalaya, High Himalaya, Qiangtang and Indochina. The united South China–Indochina continent was likely once an integral part of Gondwanaland, connected to northern India by a “Pan-African” collisional orogen.  相似文献   

5.
《Quaternary Science Reviews》2004,23(3-4):225-244
We present new paleoclimate reconstructions for the time period of 6000 yr BP (6 ka) that permit a quantitative comparison to corresponding mapped patterns of the newest version of the Canadian CCCma AGCM2 climate model. July temperature reconstructions were estimated using the modern analog technique employing fossil pollen records from the North American Pollen Database. We present a new method of optimizing critical choices within the application of the MAT through modern calibration. The pattern of 6 ka temperature anomalies generated by the CCCma AGCM2 generally agree with those of the pollen-based reconstruction, particularly in the presence of a band of positive temperature anomalies across the continent from the Yukon through the Great Lakes region and along the St. Lawrence. This agreement suggests that both the model and data are reconstructing a contraction in the polar vortex over North America at 6 ka. Major areas of disagreement between the pollen-based reconstruction and model simulation are also areas where the data are sparse and edge effects produce less reliable reconstructions. The CCCma AGCM2 simulates drier conditions in a west–east band stretching from Alaska through the Canadian prairies and Midwest United States, in agreement with low lake-level observations at 6 ka. Simulated and reconstructed precipitation–evaporation are also in agreement over the southwest United States. With the exception of north central Africa, the CCCma AGCM2 fails to capture the northward and eastern extension of the Afro-Asian monsoon belt at 6 ka. General agreement between CCCma AGCM2 P-E anomalies and lake status change is found throughout Europe at 6 ka.  相似文献   

6.
The Kenting Mélange on the Hengchun Peninsula, Taiwan, formed through tectonic shearing of subduction complex lithologies, probably within the plate boundary subduction channel between the Eurasian and Philippine Sea plates, with further deformation and exhumation in the Pliocene–Pleistocene during arc–continent collision. Field relations reveal a structural gradation from normal stratified turbidite sequence (Mutan Formation) through broken formation to highly sheared Kenting Mélange containing allochthonous polygenic blocks. This gradation is consistent with an increase of average vitrinite reflection values from ~ 0.72% in the Mutan Formation through ~ 0.93% in the broken formation to ~ 0.99% in the mélange, suggesting temperatures of at least 140 °C during formation of the Kenting Mélange. Zircons from gabbro in the Kenting Mélange are dated as 25.46 ± 0.18 Ma, which together with geochemical data constrains the source to South China Sea oceanic lithosphere. In combination with the field relationships, vitrinite reflectance values, microfossil stratigraphy, and offshore geophysical data from S and SE Taiwan, we propose that the Kenting Mélange initially formed at the subduction plate boundary from off-scraped trench deposits. Minor Plio–Pleistocene microfossils (< 5%) occur within the mélange in proximity to slope basin of equivalent age and were likely sheared into the mélange during out-of-sequence thrusting associated with active arc–continent collision, which in the Hengchun Peninsula commenced after 6.5 Ma.  相似文献   

7.
The East Massif Central (EMC), France, is part of the internal zone of the Variscan belt where late Carboniferous crustal melting and orogenic collapse have largely obliterated the pre- to early-Variscan geological record. Nevertheless, parts of this history can be reconstructed by using in-situ U-Th-Pb-Lu-Hf isotopic data of texturally well-defined zircon grains from different lithological units. All the main rock units commonly described in the EMC are present in the area of Tournon and include meta-sedimentary and meta-igneous rocks of the Upper Gneiss Unit (UGU) and of the Lower Gneiss Unit (LGU), as well as cross-cutting Variscan granitoid dikes and a heterogeneous granite coring the major Velay dome. Herein we demonstrate that the UGU and the LGU have markedly distinct zircon records. The results of this study are consistent with deposition of the protoliths of the paragneisses within a back-arc basin that was located adjacent to the Arabian-Nubian shield and/or the Saharan Metacraton during the late Ediacaran and collected detritus from the Gondwana continent. At ~ 545 Ma some of these sedimentary rocks were affected by a first melting event that formed the protoliths of the LGU orthogneisses, those of which subsequently remelted at ca. 308 Ma to form the Velay granite-migmatite dome. Protoliths of the UGU result mainly from a bimodal rift-related magmatism at ~ 480 Ma, corresponding to melting of the Ediacaran sediments and depleted mantle. Zircon rims from the UGU additionally provide evidence for a metamorphic/migmatitic overprint during the Lower Carboniferous (~ 350–340 Ma). Finally, several generations of granite dikes of which inherited zircons display characteristics of both the UGU and the LGU were protractedly emplaced from ~ 322 Ma to ~ 308 Ma, the youngest of which being coeval with the formation of the Velay dome. Our data further show that the vast majority of crustal material ultimately involved in the Variscan orogeny, which forms the present-day basement in the EMC, was derived from a sedimentary mixture of various components from the Gondwana continent deposited in Ediacaran times, with no evidence for the involvement of an older autochthonous crust.  相似文献   

8.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   

9.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

10.
11.
《Precambrian Research》2006,144(1-2):92-125
This paper presents a plate tectonic model for the evolution of the Australian continent between ca. 1800 and 1100 Ma. Between ca. 1800 and 1600 Ma episodic orogenesis occurred along the southern margin of the continent above a north-dipping subduction system. During this interval multiple orogenic events occurred. The West Australian Craton collided with the North Australian Craton (ca. 1790–1770 Ma), the Archaean nucleus of the Gawler Craton amalgamated with the North Australian Craton (ca. 1740–1690 Ma), and numerous smaller terranes accreted along the western Gawler Craton and the southern Arunta Inlier (ca. 1690–1640 Ma). The pattern of accretion suggests southward migration of the plate margin, which occurred due to a combination of slab rollback and back stepping of a subduction system behind the accreted continental blocks. Coeval with subduction a series of continental back-arc basins formed in the interior of the North Australian Craton and parts of the South Australian Craton, which were attached to the North Australian Craton prior to 1500 Ma. Extension of the North Australian Craton led to the opening of an oceanic basin along the eastern margin of the continent at ca. 1660 Ma. Continuing divergence was accommodated by oceanic spreading whereas the continental basins thermally subsided resulting in the development of sag-phase basins throughout the North Australian Craton. This oceanic basin was subsequently consumed during convergence, which ultimately led to development of a ca. 1600–1500 Ma orogenic belt along the eastern margin of Proterozoic Australia. Between ca. 1470 and 1100 Ma, the South Australian Craton, consisting of the Curnamona Province and the Gawler Craton rifted from the North Australian Craton and was re-attached in its present configuration during episodic ca. 1330–1100 Ma orogenesis, which is preserved in the Albany-Fraser Belt and the Musgrave Block.  相似文献   

12.
《Gondwana Research》2013,24(4):1241-1260
An overview is presented for the formation and evolution of Precambrian continental lithosphere in South China. This is primarily based on an integrated study of zircon U–Pb ages and Lu–Hf isotopes in crustal rocks, with additional constraints from Re–Os isotopes in mantle-derived rocks. Available Re–Os isotope data on xenolith peridotites suggest that the oldest subcontinental lithospheric mantle beneath South China is primarily of Paleoproterozoic age. The zircon U–Pb ages and Lu–Hf isotope studies reveal growth and reworking of the juvenile crust at different ages. Both the Yangtze and Cathaysia terranes contain crustal materials of Archean U–Pb ages. Nevertheless, zircon U–Pb ages exhibit two peaks at 2.9–3.0 Ga and ~ 2.5 Ga in Yangtze but only one peak at ~ 2.5 Ga in Cathaysia. Both massive rocks and crustal remnants (i.e., zircon) of Archean U–Pb ages occur in Yangtze, but only crustal remnants of Archean U–Pb ages occur in Cathaysia. Zircon U–Pb and Lu–Hf isotopes in the Kongling complex of Yangtze suggest the earliest episode of crustal growth in the Paleoarchean and two episodes of crustal reworking at 3.1–3.3 Ga and 2.8–3.0 Ga. Both negative and positive εHf(t) values are associated with Archean U–Pb ages of zircon in South China, indicating both the growth of juvenile crust and the reworking of ancient crust in the Archean. Paleoproterozoic rocks in Yangtze exhibit four groups of U–Pb ages at 2.1 Ga, 1.9–2.0 Ga, ~ 1.85 Ga and ~ 1.7 Ga, respectively. They are associated not only with reworking of the ancient Archean crust in the interior of Yangtze, but also with the growth of the contemporaneous juvenile crust in the periphery of Yangtze. In contrast, Paleoproterozoic rocks in Cathaysia were primarily derived from reworking of Archean crust at 1.8–1.9 Ga. The exposure of Mesoproterozoic rocks are very limited in South China, but zircon Hf model ages suggest the growth of juvenile crust in this period due to island arc magmatism of the Grenvillian oceanic subduction. Magmatic rocks of middle Neoproterozoic U–Pb ages are widespread in South China, exhibiting two peaks at about 830–800 Ma and 780–740 Ma, respectively. Both negative and positive εHf(t) values are associated with the middle Neoproterozoic U–Pb ages of zircon, suggesting not only growth and reworking of the juvenile Mesoproterozoic crust but also reworking of the ancient Archean and Paleoproterozoic crust in the middle Neoproterozoic. The tectonic setting for this period of magmatism would be transformed from arc–continent collision to continental rifting with reference to the plate tectonic regime in South China.  相似文献   

13.
《Quaternary Research》2014,81(3):531-537
We investigate the changes at nine glaciers in the Ningchan and Shuiguan river source, eastern Qilian Mountains, between 1972 and 2010. According to analysis of topographic maps and multispectral satellite data, all nine glaciers in the study area have retreated, by a maximum of 250 ± 57.4 m and a minimum of 91 ± 57.4 m. The total glacier area decreased by 1.20 km2, corresponding to 9.9% of the glacierized area in 1972. Comparing the two DEMs generated from the topographic maps and Real-Time Kinematic GPS data, the mean glacier thinning rate was 0.64 m yr 1 between 1972 and 2010. The most significant thinning generally occurred on the termini. The ice-volume loss was about 106.8 ± 46.7 × 10 3 km3 (equal to 90.8 ± 39.7 × 10 3 km3 w.e.), which suggested a mean water discharge of 0.1 ± 0.05 m3/s during 1972–2010. Based on analysis of meteorological data, the summer temperature (June–August) tends to increase over a similar time period. The consistency of temperature increase and glacier shrinkage allows us to suggest that air temperature plays an important role in glacier changes in this region.  相似文献   

14.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

15.
The Xiaguan Ag–Pb–Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250–320 °C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+–Cl-type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280–320 MPa in the early mineralization stage to ca. 90–92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag–Pb–Zn orefield belongs to orogenic-type systems.The δ18OH2O values change from the Early (E)-stage (7.8–10.8 ‰), through Middle (M)-stage (6.0–9.4 ‰) to Late (L)-stage (− 1.5–3.3 ‰), with δD values changing from E-stage − 95 to − 46 ‰, through M-stage − 82 to − 70 ‰ to L-stage − 95 to − 82 ‰. δ13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 ‰ and 0.9 ‰ (average: 0.3 ‰); δ13CCO2 values of L-stage FIs are − 0.2–0.1 ‰ in quartz and − 6.8 ‰ to − 3.5 ‰ in calcite. The H–O–C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution.Sulfur (δ34S = 1.9–8.1 ‰) and lead isotopic compositions (206Pb/204Pb = 18.202–18.446, 207Pb/204Pb = 15.567–15.773 and 208Pb/204Pb = 38.491–39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187  124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag–Pb–Zn orefield was formed in a continent–continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF).  相似文献   

16.
《Gondwana Research》2014,25(3-4):936-945
Body wave seismic tomography is a successful technique for mapping lithospheric material sinking into the mantle. Focusing on the India/Asia collision zone, we postulate the existence of several Asian continental slabs, based on seismic global tomography. We observe a lower mantle positive anomaly between 1100 and 900 km depths, that we interpret as the signature of a past subduction process of Asian lithosphere, based on the anomaly position relative to positive anomalies related to Indian continental slab. We propose that this anomaly provides evidence for south dipping subduction of North Tibet lithospheric mantle, occurring along 3000 km parallel to the Southern Asian margin, and beginning soon after the 45 Ma break-off that detached the Tethys oceanic slab from the Indian continent. We estimate the maximum length of the slab related to the anomaly to be 400 km. Adding 200 km of presently Asian subducting slab beneath Central Tibet, the amount of Asian lithospheric mantle absorbed by continental subduction during the collision is at most 600 km. Using global seismic tomography to resolve the geometry of Asian continent at the onset of collision, we estimate that the convergence absorbed by Asia during the indentation process is ~ 1300 km. We conclude that Asian continental subduction could accommodate at most 45% of the Asian convergence. The rest of the convergence could have been accommodated by a combination of extrusion and shallow subduction/underthrusting processes. Continental subduction is therefore a major lithospheric process involved in intraplate tectonics of a supercontinent like Eurasia.  相似文献   

17.
A set of radiocarbon dates on woolly mammoth were obtained from several regions of Arctic Siberia: the New Siberian Islands (n = 68), north of the Yana-Indigirka Lowland (n = 43), and the Taimyr Peninsula (n = 18). Based on these and earlier published dates (n = 201) from the East Arctic, a comparative analysis of the time-related density distribution of 14C dates was conducted. It was shown that the frequencies of 14C dates under certain conditions reflect temporal fluctuations in mammoth numbers. At the end of the Pleistocene the number of mammoths in the East Arctic changed in a cyclic manner in keeping with a general “Milankovitch-like” trend. The fluctuations in numbers at the end of the Pleistocene occurred synchronously with paleoenvironmental changes controlled by global climatic change. There were three minima of relative mammoth numbers during the last 50 000 years: 22 000, 14 500–19 000, and 9500 radiocarbon years ago, or around 26 000, 16–20 000, and 10 500 calendar years respectively. The last mammoths lived on the New Siberian Islands, which were connected to the continent at that time, 9470 ± 40 radiocarbon years ago (10 700 ± 70 calendar years BP). This new youngest date approximates the extinction time of mammoths in the last continental refugium of the Holarctic. The adverse combination of environmental parameters was apparently a major factor in the critical reduction in mammoth numbers. The dispersal of humans into the Arctic areas of Siberia no later than 28 000 radiocarbon years ago did not overtly influence animal numbers. Humans were not responsible for the destruction of a sustainable mammoth population. The expanding human population could have become fatal to mammoths during strong the minima of their numbers, one of which occurred at the very beginning of the Holocene.  相似文献   

18.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

19.
The east-central part of Jilin Province, located on the eastern continental margin of northeast China along the eastern Xing–Meng orogenic belt, hosts more than 10 large- and medium-scale Mo deposits. The major types of mineralization include porphyry, skarn, and quartz vein. To better understand the formation and distribution of porphyry Mo deposits in this area, we investigated the geological characteristics of the deposits and applied molybdenite Re–Os isotope dating to constrain the age and source of mineralization. The results, combined with existing data, show that: (a) the Daheishan Mo deposit yields an isochron age of 168.7 ± 3.1 Ma; (b) the Shuangshan Mo deposit yields an isochron age of 171.6 ± 1.6 Ma; (c) the Liushengdian Mo deposit yields a weighted mean model age of 168.7 ± 1.4 Ma; (d) the Jiapigou Mo deposit yields a weighted mean model age of 196 ± 4 Ma; and (e) the Sancha Mo deposit yields a weighted mean model age of 183.1 ± 1.8 Ma. Therefore, the Mo mineralization occurred in the Early–Middle Jurassic (196–167 Ma), during the late stages of magmatism or during the late evolution of magma chambers. The geodynamic setting at this time was dominated by subduction of the paleo-Pacific Plate beneath the Eurasian continent. The rhenium content of molybdenite varies from 0.2 to 99.7 ppm, suggesting that the ore-forming materials may come from a crustal source or a mixed crustal and mantle source.  相似文献   

20.
《Ore Geology Reviews》2007,30(3-4):307-324
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号