首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

2.
Precambrian granitic basement rocks obtained from well BH-36 of Bombay High Field, western offshore of India has been studied both by Rb-Sr and K-Ar dating methods. Seven basement samples chosen from two cores have yielded whole rock Rb-Sr isochron age of 1446 ± 67 Ma with an initial87Sr/86Sr ratio of 0.7062 ± 0.0012. This age has been interpreted as the formation/emplacement time of the granite. Two biotite fractions of different grain size separated from a sample CC6B2T have yielded Rb-Sr mineral isochron age of 1385 ± 21 Ma. However, these fractions when studied by K-Ar dating method have yielded slightly higher but mutually consistent ages of 1458 ± 43 Ma and 1465 ± 43 Ma, respectively. Further, two biotites separated from additional samples CC5B9T and CC6B3B have yielded K-Ar ages of 1452 ± 42 Ma and 1425 ± 40 Ma with an overall mean age of 1438 ± 19 Ma. This mean K-Ar age is indistinguishable from whole rock Rb-Sr isochron as well as mineral isochron age within experimental error. The similarity in the whole rock and biotite ages obtained by different isotopic methods suggests that no thermal disturbance has occurred in these rocks after their emplacement/formation around 1450 Ma ago. The present study provides the evidence for the existence of an important Middle Proterozoic magmatic event around 1400-1450 Ma on the western offshore of India which, hitherto, was thought to be mainly confined to the eastern Ghats, Satpura and Delhi fold belt of India. This finding may have an important bearing on the reconstruction of Proterozoic crustal evolution of western Indian shield.  相似文献   

3.
古华北地块前寒武纪地壳发展阶段及其时限确定   总被引:2,自引:0,他引:2  
<正> 作者在参加了“辽吉地区前寒武纪研究”和“辽东晚前寒武纪”研究之后,获得了较丰富的放射性年龄资料,其中包括Rb-Sr年龄9组,U-Pb年龄18个和一批海绿石年龄,从而对辽吉地区前寒武纪地层柱的许多空白部分进行了地质年代学方面的较全面补充。其结果是使以辽东为代表的前寒武纪地层柱基本上为实测年龄数据所控制,成为我国前寒武纪各地块中时间剖面齐全,数据丰富的地区。对此我们已做了报道(王东方、王集源、  相似文献   

4.
The lower tectonic unit of Ios provides evidence of an at least four stage metamorphic and intrusive history which well might be generalized for large parts of the internal Pelagonian.Metamorphic country rocks of unknown age were intruded about 500 Ma ago, as concluded from a Rb-Sr whole rock (WR) isochron on relic tonalites to granodiorites which largely escaped the polyphase postmagmatic overprints.A Hercynian amphibolite facies metamorphism, during which the igneous rocks were partly recrystallized to orthogneisses, is dated by a lower intercept age of 300–305 Ma of U-Pb determinations on zircons and by three almost concordant Rb-Sr muscovite-WR ages of 295 to 288 Ma.K-Ar analyses on these muscovites and on biotites, and Rb-Sr tie lines WR-biotite and WR with other relic magmatic minerals yielded various apparent ages between 260 and 60 Ma. They are interpreted as mixed ages between a Hercynian cooling age and the two stage Alpidic overprints.White micas formed during the Eocene high P/T and/or Oligocene/Miocene Barrovian-type overprints yielded K-Ar dates ranging from 82 to 26 Ma, as well as a single Rb-Sr date of 13 Ma. These Alpidic dates resemble the more detailed age patterns of other Cycladic islands. But they are not sufficient for an independent dating of the Tertiary evolution on Ios island.  相似文献   

5.
An isotopic dating investigation (66 K-Ar and 34 Rb-Sr analyses) provided the geochronological framework for the Alpine events of metamorphism and granitic magmatism on Naxos. The oldest phase of high-pressure/medium-temperature metamorphism, M1, was dated by Rb-Sr and K-Ar analyses of paragonites, phengitic muscovites and muscovites at 45±5 Ma (Middle Eocene). Most of the record of the M1 phase has been eraded by a second phase of medium-pressure/high-temperature metamorphism, M2, which induced a metamorphic zonation with anatectic melting in the highest-grade part, the migmatite dome. Most K-Ar dates of M2 hornblendes, muscovites, biotites and tourmalines range from about 21 Ma in the lower-grade part (biotite-chloritoid zone) to about 11 Ma in the migmatite dome. From the pattern of K-Ar mineral dates it is concluded that the M2 phase took place 25±5 Ma ago (Late Oligocene/Early Miocene) and was followed by a prolonged cooling history until about 11 Ma ago (Late Miocene), when the ambient temperature in the migmatite dome had decreased to below 400–360 °C. A Rb-Sr whole-rock isochron analysis of a granodioritic mass dated the intrusion (and the associated M3 phase of contact-metamorphism) at 11.1±0.7 Ma (Late Miocene), with an initial 87Sr/86Sr ratio of 0.7112 ±0.0001. A local phase of low-grade retrograde metamorphism, M4, probably related to Late Alpine overthrusting, was dated at about 10 Ma (Late Miocene).  相似文献   

6.
张臣  吴泰然 《地质科学》1998,33(1):25-30
温都尔庙群主要分布在内蒙古温都尔庙地区,该套地层是白乃庙-温都尔庙构造岩浆带的重要组成部分。长期以来,由于缺少古生物化石和可信的年龄数据,一般认为温都尔庙群属早古生代。本文对温都尔庙群变基性火山岩进行了Sm-Nd和Rb-Sr同位素研究,5件变基性火山岩全岩样品Sm-Nd和Rb-Sr等时线年龄分别为961±66Ma和624±110Ma,并对其形成时代和成因提出了一些新看法。  相似文献   

7.
The intrusive rocks associated with the large Nezhdaninka gold deposit (Au > 470 t) hosted in the Permian carbonaceous terrigenous sequence have been dated on zircon and rock-forming minerals with precision U-Pb (ID-TIMS) and Rb-Sr methods. The lamprophyre of the dike complex that occurs in the ore field and spatially is related to gold mineralization has concordant U-Pb zircon age (121 ± 1 Ma) and the same isochron Rb-Sr age (121.0 ± 2.8 Ma). The concordant U-Pb zircon age of granodiorite that dominates in the Kurum pluton is 94 ± 1 Ma, whereas the Rb-Sr isochron age of various intrusive rocks from this pluton is 1–4 Ma younger. This difference is caused by long-term cooling of the Kurum pluton and later closure of Rb-Sr isotopic system of biotite (300–350°C) and other rock-forming minerals as compared with U-Pb isotopic system of zircon (~ 900°C). The Rb-Sr age of quartz diorite from the Gel’dy group of stocks (92.6 ± 0.8 Ma) coincides within uncertainty limits with the age of the Kurum pluton. Thus, the rocks pertaining to two epochs of magmatic activity, which developed in the South Verkhoyansk Foldbelt and divided by a time span of 25–28 Ma, are documented in the Nezhdaninka ore field. Taking into account that the age of gold mineralization is no less than 120 Ma, the data obtained allow us to specify the previously proposed formation model of the Nezhdaninka deposit. These data give grounds to rule out the Late Cretaceous Kurum pluton and the Gel’dy group of stocks from constituents of the ore-magmatic system, and to suggest that an Early Cretaceous deep-seated magma source existed beneath the deposit. Along with host terrigenous rocks, this magma source participated in the supply of matter to the hydrothermal system. The Nd, Sr, and Pb isotopic systematics of igneous rocks and ore mineralization in the Nezhdaninka ore field show that the Early and Late Cretaceous magma sources were formed in the Precambrian crust dated at ~1.8 Ga.  相似文献   

8.
黄陵变质地区的同位素地质年代及地壳演化   总被引:5,自引:0,他引:5  
研究表明,黄陵变质地区崆岭群是神农架群之下的古老结晶基底,其中、下部为典型的孔兹岩系。作者首次在崆岭群孔兹岩系地层中取得可信度较高的锆石UPb一致线年龄2332Ma。同时利用K-Ar稀释法和Rb-Sr全岩等时线法获得的年龄值分别为1891和2010Ma.。这些数据证实,崆岭群属下元古界。由此认为,黄陵变质地区及扬子地台结晶基底的形成时代绝不是中晚元古,而是早元古初期。  相似文献   

9.
We present results of U-Pb (SHRIMP II) geochronological study of the rocks of the Mukhal alkaline massif in the Vitim alkaline province, western Transbaikalia. The available K-Ar and Rb-Sr dates for the alkaline rocks (Saizhen complex) of the Vitim province, including the Mukhal massif, vary over a broad range of values. The obtained age of crystallization of the Mukhal urtites refines the time when the regional alkaline magmatism began. The age of zircons and magmatic processes within the Barguzin area (315–275 Ma) is close to the peak of main events, which occurred between 295 and 275 Ma. These processes took place at the early stage of evolution of the Late Paleozoic rift system in Central Asia, whose activity was associated with the activity of mantle superplume.  相似文献   

10.
胡波  翟明国  郭敬辉  彭澎  刘富  刘爽 《岩石学报》2009,25(1):193-211
化德群出露地区位于华北克拉通北缘中部,紧邻中亚造山带南缘,呈近东西向展布。在它的西边是早-中元古代的白云鄂博裂谷和渣尔泰—狼山裂谷,东南面是由长城系、蓟县系和青白口系组成的早-新元古代的燕辽裂陷槽,南边分布着1.9~1.8Ga麻粒岩相变质的丰镇群(孔兹岩系),北边出露有代表中亚造山带的古生代岩石。化德群由一套浅变质和未变质的沉积岩组成,无火山岩夹层。地层序列包含多个沉积旋回,每个旋回自下而上为含砾砂岩、砂岩、碳酸盐岩和泥质岩。岩石组合反映了从河流—滨海—浅海相的沉积环境。化德群的地层序列可以和白云鄂博群及渣尔泰群相对比。本文对化德群四个变质砂岩样品中的碎屑锆石进行了LA-ICP-MS U-Pb年龄测定,年龄主要集中在1800±50Ma和1850±50Ma,另外还有~2500Ma和~2000Ma的次要峰值。化德群底部变质含砾云母长石石英砂岩中碎屑锆石的最小谐和年龄是1758±7Ma,限定了化德群沉积时代的下限。碎屑锆石的CL图像显示,1800±50Ma和1850±50Ma的锆石主要是变质成因,少量岩浆成因,说明化德群的源区主要是古元古代的变质岩,少量岩浆岩。~2500Ma和~2000Ma的碎屑锆石代表了更为古老的源区。碎屑锆石的U-Pb年龄限制了化德群的沉积时代为古元古代晚期—中元古代,年龄峰值对应华北克拉通的重要构造热事件,而无与中亚造山带地质事件相关的年龄信息。沉积组合特征表明化德群属于稳定的浅水—半深水沉积盆地。化德盆地、渣尔泰—狼山盆地和白云鄂博盆地共同构成华北克拉通北缘的被动陆缘裂谷系,该裂谷系的形成可能与燕辽及熊耳裂陷槽的打开是同时期的。因此,华北克拉通的北界应该置于化德群出露区域以北。基于锆石特征的详细分析及对比,我们认为化德群以南的孔兹岩系可能是化德群的主要源区。  相似文献   

11.
This paper presents the results of structural, lithologic, and geochronological (K-Ar, Rb-Sr) studies of the Carnian terrigenous rocks in the sedimentary cover of the Chukchi microcontinent and U-Pb dating of detrital zircons. From the lithological features, three types of sections are recognized. Terrigenous sequences of the first type were deposited on the outer shelf in the distal zone of the prograding delta, sequences of the second type accumulated at the rise of continental slope, and sediments of the third type are characteristic of the pelagic zone. In mineralogy and geochemistry, sandstones are rather uniform and inherit the sialic composition of provenance. The detrital zircons comprise several populations with predominance of the varieties derived from igneous rocks. The U-Pb age of the youngest population is 236–255 Ma. The conditions of postsedimentation alteration reached those of greenschist metamorphic facies and anchimetamorphism. Several cleavage systems have been established. Sericite related to the oldest system is distinguished by elevated Ti, Mn, and Fe components. The first stage of deformation of the Carnian sedimentary rocks about 200 Ma ago resulted in the rearrangement of K-Ar and Rb-Sr isotopic systems in whole-rock samples and minerals and is clearly recorded in isotopic data. It is suggested that the deformation related to the normal faulting in Triassic rocks and the emergence of the Lesser Anyui Block were plausible causes of the first structural rearrangement.  相似文献   

12.
滇西南涧—云县一带广泛出露的无量山岩群是一套与三江特提斯造山带密切相关的中低变质沉积岩夹火山岩系,其形成时代、沉积充填序列及大地构造属性一直存在争议。出露于南涧县公郎乡一带的无量山岩群发育有厚数厘米的变质英安岩夹层。对变质英安岩进行LA-ICP-MS锆石U-Pb定年,分别获得428.7±8.7Ma的岩浆结晶年龄和338~387Ma、250.5±8.1Ma、146.0±6.0Ma的变质年龄。认为无量山岩群原始沉积岩形成于志留纪,在古特提斯洋俯冲过程中,经历古生代造弧而发生区域变质作用,在白垩纪受热事件影响而发生热变质作用;同时还获得2034±22Ma、1140±16Ma、731±15Ma及469~522Ma的单颗粒锆石年龄,这些年代峰值与整个扬子陆块西缘获得的前寒武纪、古生代构造热事件年龄及分布特征基本可以对比;记录了Columbia、Rodinia和Gondwana超大陆的形成与裂解过程。  相似文献   

13.
The main objective of this work is the generalization of lithostratigraphic, biostratigraphic and isotopic-geochronological data characterizing carbonate rocks from type succession of the broadly acknowledged chronostratigraphic subdivision of the Lower Riphean, such as the Burzyan Group of the Southern Urals and its analogs. Using an original approach to investigation of the Rb-Sr and Pb-Pb isotopic systems in carbonates and strict criteria of their retentivity, we studied the least altered (“best”) samples of the Burzyan carbonates, which retain the 87Sr/86Sr ratio of the sedimentation environment. As long ago as 1550 ± 30 and 1430 ± 30 Ma, that ratio corresponded to 0.70460–0.70480 and 0.70456–0.70481. The results confirm the influx of the mantle material predominantly into the World Ocean of the Early Riphean. The influence of meteoric diagenesis was likely responsible for local declines of δ18O in the Burzyan carbonates down to the values of −2.5 to −1.5‰ V-PDB. In the “best” samples, this parameter ranges from −0.7 to 0‰, which is consistent with the assumption that δ18O values (0 ± 1‰) characterized the stasis of the carbonate carbon isotopic composition in oceanic water 2.06–1.25 Ga ago. C-isotopic data on carbonate from the Paleoproterozoic-Lower Riphean boundary formations of the Urals, India, North America and Siberia suggest that the mentioned stasis ended by the commencement of the Early Riphean ca. 1.6–1.5 Ga ago. In the least altered carbonates of the Early Riphean, the δ18O variation range corresponds to 4.0–4.5‰.  相似文献   

14.
The first results of U/Pb isotopic dating (LA ICP MS) of detrital zircons from sands from the Middle Cambrian Sablinka Formation, Upper Cambrian Ladoga Formation, Low Ordovician Tosna Formation, and calcareous sands from Syas’ Formation (Sargaevskii horizon of the Upper Frasnian) from Baltica-Ladoga Glint (BLG) of the Southern Ladoga area are presented. The obtained ages of detrital zircons span the intervals 492.7 ± 5.1-3196.4 ± 5.1 Ma (Sablino Formation); 577.9 ± 7–2972.6 ± 13.4 Ma (Ladoga Formation); 509.4 ± 8.5–3247.6 ± 10.1 Ma (Tosna Formation); 451.1 ± 14.7–2442.2 ± 6.9 Ma (Syas’ Formation). A comparison of the obtained isotopic ages of detrital zircons to ages of crystalline complexes composing the Kola-Karelian, Svecofennian, and Sveconorwegian domains of Baltic Shield and Pre-Uralian-Timanian structures of Subpolar and Polar Urals and basement of Pechora Basin was carried out. It is proposed that the Middle Paleozoic sedimentary basin accumulated Upper Frasnian rocks of Syas’ Formation. The basin ranged northward from the present-day BLG and occupied the eastern part of the Baltic Shield.  相似文献   

15.
雅拉香波穹隆位于特提斯喜马拉雅构造带东部,出露显生宙不同时期的岩石地层,发育强烈韧性剪切变形和多期岩浆热事件,良好地记录了印度大陆俯冲导致的构造变形和岩浆热历史。对雅拉香波穹隆不同构造部位的花岗质岩石进行LAICP-MS锆石U-Pb同位素测年,获得4期构造岩浆事件的高精度测年数据。早期锆石年龄520.4±6.3Ma与536±12Ma指示喜马拉雅地块结晶基底泛非期岩浆侵位时代,晚期锆石年龄揭示新生代碰撞造山不同阶段构造热事件的发生时代。其中,45.6±1.2~44.16±0.88Ma反映印度大陆向北俯冲的起始时代,35.00±0.48Ma对应于始新世晚期增厚地壳深部构造热事件年龄,15.67±0.50Ma指示雅拉香波核部花岗岩侵位及穹隆的形成时代。  相似文献   

16.
小兴安岭东部早古生代花岗岩的发现及其构造意义   总被引:23,自引:4,他引:19  
通过全岩-单矿物的Rb-Sr法和锆石激光剥蚀等离子体U-Pb法定年研究,确定小兴安岭东部地区存在508~471Ma的早古生代花岗岩.根据岩石学和年代学的特征.进一步将小兴安岭东部地区的早古生代花岗岩划分为与高级变质岩伴生的片麻状花岗冈长岩-二长花岗岩(508Ma+15Ma)、块状花岗闪长岩-二长花岗岩(499Ma+1Ma)和碱长-碱性花岗岩(471 Ma±3Ma)3种岩石组合类型.上述3类花岗岩组合的依次出现反映了同碰撞-碰撞后伸展的构造演化特点,表明小兴安岭东部早古生代存在碰撞造山事件.  相似文献   

17.
The formation conditions and age of the Sukhoi Log gold deposit are considered on the basis of new isotopic-geochemical data. The U-Pb isotopic study of zircon and monazite from high-grade ore and host black slates at the Sukhoi Log deposit was carried out with SIMS technique using a SHRIMP II instrument. Two generations of monazite are distinguished on the basis of optical and scanning electron microscopy, cathodoluminescence, and micro X-ray spectroscopy. Monazite I is characterized by black opaque porphyroblasts with microinclusions of minerals pertaining to metamorphic slates and structural attributes of pre- and synkinematic formation. Monazite II occurs only within the ore zone as transparent crystals practically free of inclusions and as rims around monazite I. The REE contents are widely variable in both generations. Porphyroblastic monazite I differs in low U and Th (0.01–0.7 wt % ThO2) contents, whereas transparent monazite II contains up to 4 wt % ThO2. The average weighted U-Pb isotopic age of monazite I is 650 ± 8.1 Ma (MSWD = 1.6; n = 9) and marks the time of metamorphism or catagenesis. The U-Pb age estimates of synore monazite II cover the interval of 486 ± 18 to 439 ± 17 Ma. Zircons of several populations from 0.5 to 2.6 Ga in age are contained in the ore. Most detrital zircon grains have porous outer rims composed of zircon and less frequent xenotime with numerous inclusions of minerals derived from slates. The peaks of 206Pb/238U ages in the most abundant zircon populations fall on 570 and 630 Ma and correspond to the age of newly formed metamorphic mineral phases. The discordant isotopic ages indicate that the U-ThPb isotopic system of ancient detrital zircons was disturbed 470–440 Ma ago in agreement with isotopic age of monazite II and the Rb-Sr whole -rock isochron age of black slates (447 ± 6 Ma). The new data confirm the superimposed character of the gold-quartz-sulfide mineralization at the deposit. Black shales of the Khomolkho Formation of the Bodaibo Synclinorium were affected by metamorphism over a long period; the peaks of metamorphism and catagenesis are dated at 570 and 650–630 Ma. The high-temperature ore formation was probably related to a hidden granitic pluton emplaced 450–440 Ma ago, that is, 200 Ma later than the events of greenschist metamorphism. Hercynian granitoid magmatism (320–270 Ma) did not exert a substantial effect on the U-Th-Pb isotopic system in accessory minerals from the ore and could not have been a major source of ore-forming fluids.  相似文献   

18.
Collisional granitoid magmatism caused by the Early Neoproterozoic orogeny in the west of the Siberian craton is considered. New data on the petrogeochemical composition, U-Pb (SHRIMP II), Ar-Ar, and Sm-Nd isotopic ages of the Middle Tyrada granitoid massif in the northwestern Yenisei Ridge are presented. Plagiogranites, granodiorites, and quartz diorites of the massif are of calcareous and calc-alkalic composition. The elevated alumina contents and presence of accessory garnet permit them to be assigned to S-type granitoids. Their spidergrams show Rb, Ba, and Th enrichment, minimum Nb, P, and Ti contents, and no Sr depletion. The granitoids formed through the melting of plagioclase-enriched graywacke source, obviously Paleoproterozoic metaterrigenous rocks of the Garevka Formation and Teya Group (TNd(DM) = 2.0-2.5 Ga), judging from the isotope composition of the granitoids (TNd(DM-2st) = 2200 Ma and 8Nd(T) = − 6.0) and the presence of ancient zircon cores (1.80-1.85 Ga). Formation of granitoids took place in the final epoch of the Grenville collision events in the late Early Neoproterozoic (U-Pb zircon age is 857.0 ± 9.5 Ma). In the Late Neoproterozoic, the granitoids underwent tectonothermal reworking caused by Vendian accretion and collision events on the southwestern margin of the Siberian craton, which explain the younger K-Ar biotite age, 615.5 ± 6.3 Ma.  相似文献   

19.
 The highest grade of metamorphism and associated structural elements in orogenic belts may be inherited from earlier orogenic events. We illustrate this point using magmatic and metamorphic rocks from the southern steep belt of the Lepontine Gneiss Dome (Central Alps). The U-Pb zircon ages from an anatectic granite at Verampio and migmatites at Corcapolo and Lavertezzo yield 280–290 Ma, i.e., Hercynian ages. These ages indicate that the highest grade of metamorphism in several crystalline nappes of the Lepontine Gneiss Dome is pre-Alpine. Alpine metamorphism reached sufficiently high grade to reset the Rb-Sr and K-Ar systematics of mica and amphibole, but generally did not result in crustal melting, except in the steep belt to the north of the Insubric Line, where numerous 29 to 26 Ma old pegmatites and aplites had intruded syn- and post-kinematically into gneisses of the ductile Simplon Shear Zone. The emplacement age of these pegmatites gives a minimum estimate for the age of the Alpine metamorphic peak in the Monte Rosa nappe. The U-Pb titanite ages of 33 to 31 Ma from felsic porphyritic veins represent a minimum-age estimate for Alpine metamorphism in the Sesia Zone. A porphyric vein emplaced at 448±5 Ma (U-Pb monazite) demonstrates that there existed a consolidated Caledonian basement in the Sesia Zone. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   

20.
The Río Negro-Juruena Province (RNJP) occupies a large portion of the western part of the Amazonian Craton and is a zone of complex granitization and migmatization. Regional metamorphism, in general, occurred in the upper amphibolite facies. The granites and gneisses of the RNJP yield Rb-Sr and Pb-Pb whole-rock isochron dates ranging from 1.8 Ga to 1.55 Ga, with initial 87Sr/86Sr ratios of ~ 0.703 and a single-stage model μ1 value of ~ 8.1. In order to improve the geochronological control, SHRIMP U-Pb zircon ages, conventional U-Pb zircon ages, and additional Pb-Pb whole-rock isochron ages were determined for samples of granitoids and gneisses from the Papuri-Uaupés and Guaviare-Orinoco rivers areas (northern part of the province) and Jamari-Machado rivers and Pontes de Lacerda areas (southern part). The granitoids from the northern part of the province yield conventional U-Pb zircon ages of 1709 ± 17 Ma and 1521 ± 31 Ma, and SHRIMP U-Pb concordant zircon results of 1800 ± 18 Ma. Samples of gneissic rocks from the southern part of the RNJP yielded SHRIMP U-Pb concordant ages of 1750 ± 24 Ma and 1570 ± 17 Ma and a Pb-Pb whole-rock isochron age of 1717 ± 120 Ma. These new U-Pb and Pb-Pb results confirm the previous Rb-Sr and Pb-Pb geochronological evidence that the main magmatic episodes within the RNJP occurred between 1.8 and 1.55 Ga, and suggest that this crustal province constitutes a segment of continental crust newly added to the Amazonian Craton at the end of the Early Proterozoic. In the area of the RNJP, there are several anorogenic rapakivi-type granite plutons. Because of the absence of recognized Archean material within the basement rocks, it is reasonable to consider the Early to Middle Proterozoic continental crust as the magmatic source for the rapakivi granite intrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号