首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (14 m) oxic epilimnion overlying a 200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification.The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid–SO4–Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a ‘memory’ of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid–SO4–Cl Crater lakes.The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by 4°C or providing heat to hypolimnetic waters or by seismic activity.Although Quilotoa lake contains a huge amount of dissolved CO2 (3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa are, therefore, recommended.  相似文献   

2.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

3.
4.
To prevent the recurrence of a disastrous eruption of carbon dioxide (CO2) from Lake Nyos, a degassing plan has been set up for the lake. Since there are concerns that the degassing of the lake may reduce the stability of the density stratification, there is an urgent need for a simulation tool to predict the evolution of the lake stratification in different scenarios. This paper describes the development of a numerical model to predict the CO2 and dissolved solids concentrations, and the temperature structure as well as the stability of the water column of Lake Nyos. The model is tested with profiles of CO2 concentrations and temperature taken in the years 1986 to 1996. It reproduces well the general mixing patterns observed in the lake. However, the intensity of the mixing tends to be overestimated in the epilimnion and underestimated in the monimolimnion. The overestimation of the mixing depth in the epilimnion is caused either by the parameterization of the k-epsilon model, or by the uncertainty in the calculation of the surface heat fluxes. The simulated mixing depth is highly sensitive to the surface heat fluxes, and errors in the mixing depth propagate from one year to the following. A precise simulation of the mixolimnion deepening therefore requires high accuracy in the meteorological forcing and the parameterization of the heat fluxes. Neither the meteorological data nor the formulae for the calculation of the heat fluxes are available with the necessary precision. Consequently, it will be indispensable to consider different forcing scenarios in the safety analysis in order to obtain robust boundary conditions for safe degassing. The input of temperature and CO2 to the lake bottom can be adequately simulated for the years 1986 to 1996 with a constant sublacustrine source of 18 l s–1 with a CO2 concentration of 0.395 mol l–1 and a temperature of 26 °C. The results of this study indicate that the model needs to be calibrated with more detailed field data before using it for its final purpose: the prediction of the stability and the safety of Lake Nyos during the degassing process.Responsible Editor: Hans Burchard  相似文献   

5.
6.
Mögliche Massnahmen zur Restaurierung des Sempachersees   总被引:1,自引:1,他引:1  
Since 1954 average orthophosphate and total phosphorus concentrations have increased twenty and eightfold respectively in Lake Sempach. It is demonstrated that the lake is not in steady state with its phosphorus loading and that the net deposition rate of phosphorus is not linearly related to the phosphorus content of the lake. This implies that linear steady state one-box models are unsuitable to describe the phosphorus balance of this lake. Applying a nonlinear dynamic lake model we predict that the defined water quality goals ([P] ⩽30 mg m−3, [O2 ⩾4 mg m−3]) can only be achieved within the next 15 years if the external phosphorus loading is reduced by at least 50% and simultaneously lake-internal measures, such as hypolimnion areation or hypolimnion siphoning are carried into effect.   相似文献   

7.
Reservoirs have to be released when repairing of the dams is necessary. In 1995, two reservoirs in Baden-Württemberg (Germany) of similar age and volume (Lake Herrenbach near Göppingen, 1.0 Mio. m3 and Lake Breitenau near Heilbronn, 2.3 Mio. m3) were emptied. This allowed the singular possibility to investigate the effects of drainage and refilling on the limnochemistry and the phytoplankton biocoenosis of such artificial lakes.Before the drainage of the reservoirs, both lakes showed phosphorus release from the sediment during summer stagnation. Phosphorus values of Lake Herrenbach were regularly higher than those of Lake Breitenau (Lake Herrenbach 88 μg/l, Lake Breitenau 33 μg/l). During release, both lakes indicated higher phosphorus and chlorophyll concentrations as well as rising biomasses. Remarkable differences were observed during refilling of the reservoirs: while Lake Herrenbach showed higher transparency and lower phosphorus concentrations, Lake Breitenau progressed towards eutrophication (total phosphorus during summer 1996: Lake Herrenbach 30 μg/l, Lake Breitenau 55 μg/l). One reason for the reaction of Lake Breitenau was the reduced ground drainage during the refilling, which caused an accumulation of nutrients in the hypolimnion. Another reason was the mineralisation of vegetation which covered great parts of the dry lake sediment. The limnological change of Lake Herrenbach was not as clear but could be caused by the restauration of the pre-reservoir which was drainaged and dredged before the emptying of the main reservoir started as well as many other facts which differed Lake Herrenbach from Lake Breitenau.  相似文献   

8.
The medium shallow lake Grimnitzsee (maximum depth: 9.9 m; mean depth: 4.6 m; area: 7.7 · 106 m2) which is situated in the biosphere reserve “Schorfheide-Chorin” in northern Brandenburg (Germany) was studied in 1994 and 1995. A bathymetric map of Grimnitzsee is given for the first time. The lake is usually polymictic although in 1994 and 1995 relatively long summer stratification was observed due to very high global radiation input. Nutrient concentration, light climate, oxygen status, phytoplankton biomass and the species composition of littoral diatoms characterize the lake as eutrophic. Special features deducible from the lake's polymictic character were the multiple development of aerobic or anaerobic strata above the sediment, the fast recovery of silicon concentration in the water column after diatom sedimentation, the importance of resuspension for the success of planktonic diatom populations, and an only moderate correlation between chlorophyll a concentration and light attenuation as well as seston dry weight probably due to the influence of suspended particles.  相似文献   

9.
10.
Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by mixing with non-thermal waters. During the summer months at times of maximum flow, selected hot springs exhibit their highest temperatures and maximum enrichments in most chemical constituents.Cation ratios and silica concentrations remain relatively constant through time for selected Utah thermal springs assuring the applicability of the geothermometer calculations regardless of the time of year. Geothermometer calculations utilizing either the quartz (no steam loss), chalcedony or Mg-corrected Na/K/Ca methods indicate that most thermal springs in Utah associated with normal faults have subsurface temperatures in the range of 25 to less than 120°C. This temperature range suggests fluid circulation is restricted to depths less than about three kilometers assuming an average thermal gradient of about 40°C/km.Thermodynamic calculations suggest that most thermal springs are oversaturated with respect to calcite, quartz, pyrophyllite, (Fe, Mg)-montmorillonite, microcline and hematite, and undersaturated with respect to anhydrite, gypsum, fluorite and anorthite. Chalcedony and cristobalite appear to be the only phases consistently at or near saturation in most waters. Theoretical evaluation of mixing on mineral saturation trends indicates that anhydrite and calcite become increasingly more undersaturated as cold, dilute groundwater mixes with a hot (150°C), NaCl-rich fluid. The evolution of these thermal waters issuing from faults appears to be one involving the dissolution of silicates such as feldspars and micas by CO2-enriched groundwaters that become more reactive with increasing temperature and/or time. Solution compositions plotted on mineral equilibrium diagrams trend from product phases such as kaolinite or montmorillonite toward reactant phases dominated by alkali feldspars.Isotopic compositions indicate that these springs are of local surface origin, either meteoric (low TDS, < 5000 mg/l) or connate ground water (high TDS, > 5000 mg/l). Deviations from the meteoric water line are the result of rock-water isotopic exchange, mixing or evaporation. Fluid source regions and residence times of selected thermal spring systems (Red Hill, Thermo) have been evaluated through the use of a σ D-contour map of central and western Utah. Ages for waters in these areas range from about 13 years to over 500 years. These estimates are comparable to those made for low-temperature hydrothermal systems in Iceland.  相似文献   

11.
Temperature profiles in summer (February/March 1990) were measured in 24 lakes along a latitudinal transect from central Chile (32° S) to Patagonia (47° S), and on Easter Island (27° S). The lakes of the temperature zone, between 47° S and 38° S, are warm monomictic with surface and deep-water temperatures ranging from 12 °C to 21 °C and from 5.5 °C to 10 °C respectively. The heat content per unit area in midsummer was found to vary with lake area. The local stability of stratification (N 2) varied by more than two orders of magnitude, declining with increasing latitude, altitude, and depth. The lakes can be classified according to morphometric and temperature characteristics, mixing depth, stability of stratification and glacial turbidity. Lago General Carrera (463 m) was found to be almost as deep as Lago Nahuel Huapi (464 m), which is considered to be the deepest lake in South America.  相似文献   

12.
The weight-specific respiration rate (μl O2 mg−1 AFDW h−1) of three species of leech from Lake Esrom, Denmark, Glossiphonia concolor, G. complanata and Helobdella stagnalis was measured in a closed stirred chamber with a micro electrode. At declining oxygen concentration (mg O2 l−1) all three species expressed moderate ability to regulate respiration, in G. concolor and G. complanata down to 2 mg O2 l−1, in H. stagnalis down to 0.75 mg O2 l−1. Survival in anoxia was measured in closed bottles. The time to 50% survival (LD50) was 30 days in G. concolor at 20 °C and 30 and 4 days in H. stagnalis at 10 and 20 °C, respectively. The results were discussed in relation to habitat and spatial distribution of the three species in the lake.  相似文献   

13.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   

14.
15.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

16.
17.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

18.
Ambae (also known as Aoba), is a 38 × 16 km2 lozenge-shaped island volcano with a coastal population of around 10 000. At the summit of the volcano is lake Voui — one of the largest active crater lakes worldwide, with 40 × 106 m3 of acidic water perched 1400 m a.s.l. After more than 300 years of dormancy, Ambae volcano reawakened with phreatic eruptions through Voui in 1995, and culminating in a series of surtseyan eruptions in 2005, followed by a rapid and spectacular colour change of the lake from light blue to red in 2006. Integrating lake water chemistry with new measurements of SO2 emissions from the volcano during the 2005–2006 eruptive period helps to explain the unusual and spectacular volcanic activity of Ambae — initially, a degassed magma approached the lake bed and triggered the surtseyan eruption. Depressurization of the conduit facilitated ascent of volatile-rich magma from the deeper plumbing system. The construction of a cone during eruption and the high degassing destabilised the equilibrium of lake stratification leading to a limnic event and subsequently the spectacular colour change.  相似文献   

19.
Coleps hirtus viridis was the dominant species of the planktonic ciliate community of Lake Fühlinger See (Germany) during the study in 1999 and 2000. Total ciliate densities ranged from 120 to 42,000 ind. l−1 in 1999 and up to 8,000 ind. l−1 in 2000. Coleps contributed up to 98% to both total ciliate abundance and biomass and made up an average of 64% of the total ciliate biomass. Oligotrichs (Rimostrombidium, Strobilidium) dominated the epilimnetic zone, whereas peritrich ciliates (Pelagovorticella, Vorticella) were predominantly located in the hypolimnion. The population maximum of Coleps changed locations from the epilimnion in early summer to the hypolimnion (up to 40,000 ind. l−1) during stratification. High growth rates in the hypolimnion, presence of endosymbiontic algae and the ability to ingest detritus seem to be important for the success.Growth rates of Coleps in June were determined by Landry-Hassett dilution experiments in both the epilimnion and the hypolimnion. The instantaneous growth rates were similar in both layers (0.6 d−1), but a distinctly higher instantaneous mortality was estimated for the epilimnion. These high loss rates may be due to grazing pressure by cladocerans.The significance of the histophagous feeding of Coleps was evaluated through an experiment using killed zooplankton. Parts of Daphnia magna were incorporated at rates of about 1,100 μm3 ind.−1 h−1 by Coleps without endosymbiotic algae and at rates of 500 μm3 ind.−1 h−1 by Coleps with endosymbionts. These high feeding rates support the conclusion that Coleps can use dead organic matter as an additional food source.  相似文献   

20.
In most lakes eutrophication is linked to an excessive input of phosphorus. Lake restoration by reduction of P-input (external measure) has led to a considerable drop of the P-concentration in all major Swiss lakes as well as in many other lakes. Internal restoration measures such as artificial mixing, drainage of hypolimnetic water, flushing, aeration, biomanipulation and others serve to improve and accelerate the response of a lake to external measures. For the case of Lago di Lugano, a simple two-box model is employed to demonstrate that a reduction of the P-input to about 25% of the present values is necessary to reach the P-criterion (P-concentration below 30 µg/l). Internal measures could possibly accelerate the extremely slow response of the northern basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号