首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Scattering of a plane harmonic P, SV, or Rayleigh wave by a corrugated elastic inclusion completely embedded in a two-dimensional isotropic half space is investigated by using a direct boundary integral equation method. The corrugated scatterer is generated by superimposing a random perturbation of arbitrary amplitude to a smooth elliptical shape. The probability density function for the randomly corrugated inclusions is assumed to be of uniform or normal types. The displacement fields are evaluated along the half-space surface for a range of impedance contrasts, frequencies, five incident waves for circular- and elliptic-based rough inclusions. Subsequently, the roughness factor is introduced in terms of the surface response for the rough and the corresponding smooth inclusions. The results clearly show that this factor strongly depends upon the impedance contrast of the materials, the basic inclusion geometry, the type of incident wave, and the frequency. The peak values of the roughness factor are observed for the near-grazing SV incidence. Furthermore, the impedance contrast of the materials has a non-uniform effect upon the surface motion. While the smallest roughness factor is consistently observed for the minimal impedance contrast the peak values of the same factor may take place for different non-minimal impedance contrasts. For the range of frequencies considered here, the type of the random interface corrugation (random-uniform vs. random-normal) has a minimal effect upon the roughness factor.  相似文献   

2.
Scattering of plane harmonic P, SV, or Rayleigh waves by a two-dimensional rough cavity completely embedded in an isotropic elastic half-space is investigated by using a direct boundary integral equation method. The cavity’s roughness is assumed to be in the form of periodic or random perturbations of arbitrary amplitude superimposed to a smooth elliptical shape. For the randomly corrugated cavities the normal or the uniform probability distribution functions are assumed. Based on multiple random cavity results, the corresponding average surface response is computed. These are compared with the corresponding periodically corrugated and smooth cavity responses. The surface response is evaluated for different cavity shapes and incident waves and for a range of frequencies. The surface motion results are used to determine the peak surface motion frequencies. They depend strongly upon the basic inclusion shape (the principal axes) and the nature of the incident wave. Strong similarity in the peak surface motion frequencies can be observed for the rough and smooth cavity models for both circular and elliptical shapes. In order to quantify the importance of the cavity corrugation upon the surface motion, a roughness influence factor is defined in terms of the rough and smooth cavity surface responses. This factor strongly depends upon the type of the incident wave, the nature of the cavity corrugation, the basic cavity shape, and the frequency. The factor clearly shows the effect of the cavity roughness upon the surface motion.  相似文献   

3.
Scattering of plane harmonic SH, P, SV and Rayleigh waves by several inclusions of arbitrary shape, completely embedded into an elastic half-space, is considered. Perfect bonding between the half-space and the inclusions is assumed. The problem is investigated for linear, isotropic and homogeneous elastic materials. The displacement field is evaluated throughout the elastic medium so that the continuity conditions between the half-space and the inclusions are satisfied in mean-square sense. Numerical results of the surface displacement field are evaluated for single and two elliptic inclusions. The results show the following: (a) presence of a subsurface inhomogeneity may lead to large amplifications of the surface ground motion; (2) different surface displacement patterns emerge for different incident waves; (3) the presence of an additional inclusion may change significantly the surface displacement response of a single inclusion; (4) the surface motion extremes strongly depend upon (i) angle of incidence; (ii) frequency of incident field; (iii) embedment depth of the inclusions; (iv) separation distance between the inclusions; (v) material properties of the half-space and the inclusions; and (vi) location of observation point on the surface of the half-space.  相似文献   

4.
Local Site Effects in the Town of Benevento (Italy) from Noise Measurements   总被引:2,自引:0,他引:2  
— The study of ground motion amplification produced by surface geology is extremely interesting in the Benevento area, Southern Italy, as it is characterized by high seismic hazard. The present moderate-to-low seismicity makes the noise method appropriate to estimate the seismic site response in the area. The three components of seismic noise have been recorded in five sites in the Benevento metropolitan area characterized by different surface geology, in order to estimate the seismic site response. In evaluating site amplification effects we used the direct interpretation of amplitude spectra and standard spectral ratio techniques, evaluating sediment-to-bedrock, sediment-to-average and H/V spectral ratios. The temporal evolution of the noise spectra is analysed within one day, in order to assess the stationarity of the noise signal. The noise wavefield properties have been studied through polarization analyses in selected bands of frequency, where spectral peaks are observed to dominate, to better understand the real nature of those peaks. Results give evidence of low amplification levels, missing any correlation between spectral amplitudes and sediment thickness over the basement. We interpret this result as due to the poor impedance contrast between sediments and basement, which is characterized by low values of shear waves velocity. Moreover, sharp amplitude peaks are observed in the raw spectra of the sediment-sites, in the 2–4 Hz frequency band; a numerical simulation interprets this effect as possibly associated with a wide-scale structure, invoking the presence of a sharper impedance contrast at greater depth. At high frequencies the action of ambient noise sources, mainly active on horizontal components of motion, is retained dominant to generate the prominent peaks observed in the H/V spectral ratios; in some cases the presence of a near-surface low-velocity layer can contribute to amplify the seismic motion generated at these frequencies.  相似文献   

5.
This is the first part of a study on the seismic response of the L’Aquila city using 2D simulation and experimental data. We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0°–90°. Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding synthetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal components have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90°. The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.  相似文献   

6.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of surface geology on ground motion provide an important tool in seismic hazard studies. It is well known that the presence of soft sediments can cause amplification of the ground motion at the surface, particularly when there is a sharp impedance contrast at shallow depth. The town of Avellino is located in an area characterised by high seismicity in Italy, about 30?km from the epicentre of the 23 November 1980, Irpinia earthquake (M?=?6.9). No earthquake recordings are available in the area. The local geology is characterised by strong heterogeneity, with impedance contrasts at depth. We present the results from seismic noise measurements carried out in the urban area of Avellino to evaluate the effects of local geology on the seismic ground motion. We computed the horizontal-to-vertical (H/V) noise spectral ratios at 16 selected sites in this urban area for which drilling data are available within the first 40?m of depth. A Rayleigh wave inversion technique using the peak frequencies of the noise H/V spectral ratios is then presented for estimating Vs models, assuming that the thicknesses of the shallow soil layers are known. The results show a good correspondence between experimental and theoretical peak frequencies, which are interpreted in terms of sediment resonance. For one site, which is characterised by a broad peak in the horizontal-to-vertical spectral-ratio curve, simple one-dimensional modelling is not representative of the resonance effects. Consistent variations in peak amplitudes are seen among the sites. A site classification based on shear-wave velocity characteristics, in terms of Vs30, cannot explain these data. The differences observed are better correlated to the impedance contrast between the sediments and basement. A more detailed investigation of the physical parameters of the subsoil structure, together with earthquake data, are desirable for future research, to confirm these data in terms of site response.  相似文献   

8.
The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of seawater on incident plane P and SV waves at ocean bottom indicate that on one hand, the affected frequency range of vertical ground motions is prominent due to P wave resonance in the water layer if the impedance ratio between the seawater and the underlying medium is large, but it is greatly suppressed if the impedance ratio is small; on the other hand, for the ocean bottom interface model selected herein, vertical ground motions consisting of mostly P waves are more easily affected by seawater than those dominated by SV waves. The statistical analysis of engineering parameters of offshore ground motion records indicate that:(1) Under the infl uence of softer surface soil at the seafl oor, both horizontal and vertical spectral accelerations of offshore motions are exaggerated at long period components, which leads to the peak spectral values moving to a longer period.(2) The spectral ratios(V/H) of offshore ground motions are much smaller than onshore ground motions near the P wave resonant frequencies in the water layer; and as the period becomes larger, the effect of seawater becomes smaller, which leads to a similar V/H at intermediate periods(near 2 s). These results are consistent with the conclusions of Boore and Smith(1999), but the V/H of offshore motion may be smaller than the onshore ground motions at longer periods(more than 5 s).  相似文献   

9.
A two-dimensional elastic Chebyshev spectral element method (SPEM) is used to model the seismic wavefield within a massive structure and in its vicinity. We consider 2-D models where a linear elastic structure, with quadrangular cross-section, resting on an elastic homogeneous half-space, is impinged upon by the waves generated by a surface impulse at some distance. The scattering of Rayleigh waves and the response of the structure are extensively analysed in a parametric way, varying size, mechanical parameters and shape of the load. Some of the models considered are representative of embankments and earth dams. The simulation shows that some models resonate, storing part of the incoming energy. With realistic parameters, the lowest resonance frequency is due to pure shear deformation and is controlled by the shear velocity and height of the load. Flexural modes are excited only at higher frequencies. The acceleration at the top of the structure may be five/seven times higher than at the base, depending on the mass of the structure. The gradual release of trapped energy produces a ground roll lasting several seconds after the wave front has passed. The ground-roll amplitude depends on the sturcture's mass and can be as large as 30% of the peak acceleration. Outside resonance conditions, the ground motion is almost unaffected by the presence of the artefact; the horizontal motion on top of it is nearly twice the motion at ground level. Similar results should be expected when the incident field is an upcoming shear wave. A qualitative discussion shows that the presence of anelastic attenuation in the embankment does not significantly alter the preceding conclusions, unless it is of very low values (e.g. Q < 15).The modelling results that we discuss indicate that the soil-structure interaction may substantially alter the ‘free-field’ ground motion. From a practical point of view, the main conclusions are: (1) careful analysis is necessary when interpreting seismic records collected in the vicinity of large artefacts; (2) seismic hazard at a site may depend on the presence of man-made structures such as embankments, dams, tall and massive buildings.  相似文献   

10.
Lamé parameters inversion based on elastic impedance and its application   总被引:1,自引:0,他引:1  
The Connolly (1999) elastic impedance (EI) equation is a function of P-wave velocity, S-wave velocity, density, and incidence angle. Conventional inversion methods based on this equation can only extract P-velocity, S-velocity, and density data directly and the elastic impedance at different incidence angles are not at the same scale, which makes comparison difficult. We propose a new elastic impedance equation based on the Gray et al. (1999) Zoeppritz approximation using Lamé parameters to address the conventional inversion method’s deficiencies. This equation has been normalized to unify the elastic impedance dimensions at different angles and used for inversion. Lamé parameters can be extracted directly from the elastic impedance data obtained from inversion using the linear relation between Lamé parameters and elastic impedance. The application example shows that the elastic parameters extracted using this new method are more stable and correct and can recover the reservoir information very well. The new method is an improvement on the conventional method based on Connolly’s equation. Wang Baoli graduated with a Bachelor’s degree in Prospecting Information and Engineering from the China University of Petroleum (East China) in 2004 and earned her Master’s degree from the department of Geophysical Prospecting and Information Technology in the China University of Petroleum ((East China) in 2006. She now studies for her PhD at the China University of Petroleum (East China). Her research interest is elastic impedance inversion.  相似文献   

11.
Seismic characterization and monitoring of Fucino Basin (Central Italy)   总被引:1,自引:1,他引:0  
The Fucino basin (Central Italy) is one of the largest intramountain alluvial plain in the Apennines range. It has a tectonic origin related to the presence of important systems of faults located in its northern and eastern edges. Some of these faults are still active and capable of generating strong seismic events. Site effects related to the soft soils filling the basin can be very important. In this paper we show the preliminary results of a seismic network installed in the Fucino area in order to collect information about site amplification effects and geometry of the basin. We analyze ambient seismic vibrations and recordings of about 150 local earthquakes mainly related to the seismic sequence of the April 6th 2009 Mw 6.3 L’Aquila event. Moreover the strongest events of L’Aquila sequence were analyzed at the three permanent strong-motion stations operating in the area. Using standard spectral techniques we investigate the variation of resonance frequencies within the basin. The ground motion recorded in the Fucino plain is mainly characterized by strong energy at low-frequencies (f < 1 Hz) affecting both horizontal and vertical components. This is particularly evident for stations deployed in correspondence of very thick deposits of sedimentary filling, where a significant increase of ground-motion amplitude and duration is likely caused by locally generated surface waves. The amplification at low-frequencies (<1 Hz) on the horizontal components can reach up a factor of 10 in comparison to nearby stiff sites. However, we found evidences of seismic amplification phenomena also for stiff sites surrounding the basin, including stations of the Italian strong motion network. The independent geological information and the shallow shear-velocity profiles available for the basin can be combined with resonance frequencies for deriving representative geological sections to be used as base for future numerical 2D–3D modeling of the basin.  相似文献   

12.
This paper deals with the periodic response of an oscillating system which is supported on a frictional interface. The base excitation is assumed harmonic and the frictional force is assumed to be of the Coulomb type. Though each segment of the motion of such a system is described by linear equations, its complete response is highly non-linear and varied. The most fundamental periodic solutions are derived analytically and numerically. The results indicate that such a system has several subharmonic resonant frequencies and that while the friction reduces the peak response of the system when it is excited at its ‘fixed-base’ natural frequency, ωn, the sliding can induce considerably higher levels of response, when compared with those of a non-sliding, fixed-base system, for frequencies less than ωn. The results obtained herein may find application in the area of vibration isolation.  相似文献   

13.
Scattering of elastic waves by an orthotropic sedimentary basin is investigated for antiplane strain model using an indirect boundary integral equation approach. Both steady state and transient response were obtained for semicircular and semielliptical basins with different material properties. The results indicate that the basin geometry and the impedance contrast between the half-space and the basin have similar effects on the surface ground motion amplification as for the isotropic case. However, the material anisotropy may change significantly the fundamental resonant frequencies of the basin, resulting in different surface displacement amplification patterns. In addition, it was observed that the arrival time of the main disturbance on the surface strongly depends on material anisotropy for different angles of incidence. The results demonstrate that material anisotropy may be very important in explaining surface ground motion amplification for sedimentary basins. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
The present paper investigates the effect of voids on the propagation of surface waves in a homogeneous micropolar elastic solid medium which contains a distribution of vacuous pores (voids). The general theory for surface wave propagation in micropolar elastic media containing voids has been presented. Particular cases of surface waves (Rayleigh’s, Love’s and Stoneley’s) in micropolar media which contain vacuous pores have been deduced from the above general theory. Discussions have been made in each case to highlight the effect of voids and micropolar character of the material medium separately. Their joint effect has also been studied in details. Modulation of Rayleigh wave velocity has been studied numerically. It is observed that Love waves are not affected by the presence of voids.  相似文献   

15.
地震反应分析中输入界面选取合理与否对设计地震动参数有重要影响。基于唐山地区钻孔剖面,分别选取剪切波速为500m/s的硬黏土和800m/s的岩石顶面作为基岩输入界面,采用一维等效线性化方法讨论中硬场地输入界面的选取对地表地震动参数的影响,结果表明:(1)地表峰值加速度放大倍数及地表加速度反应谱特征周期都随输入界面深度的增加而递增,且这种递增与输入地震动的强度及频谱特性都有密切联系;(2)随着输入界面深度的增加,地表加速度反应谱几乎全频段内增大,仅在短周期内出现减小的情况,但幅度十分有限;(3)中硬场地地震反应分析中基岩输入界面宜取剪切波速为800m/s的土层顶面。  相似文献   

16.
Seismic wavefield scattering from a statistically randomly rough interface in a multilayered piecewise homogeneous medium is studied in 3D. The influence of the surface roughness on the scattered wavefield is analysed numerically by using a finite‐difference operator in the acoustic domain. Since interface scattering in the real practical sense is a 3D physical phenomenon, we show in this work that the scattering response of a randomly rough interface is not the same in 3D situations as in the 2D cases described in some earlier works. For a given interface roughness height in 3D, an interface roughness height at least three times greater is required to produce an equivalent phase scattering effect in 2D situations, for a given correlation length of the interface roughness scale. Based on observations from spectral analysis, we show that scattering results principally in de‐phasing and frequency band‐limiting of the incident wavefront, the frequency band‐limiting properties being comparable to cases reported in the literature for absorption and thin‐layer filtering. The interface scattering phenomenon should be critically considered when using amplitude and phase information from seismic signal during inversion processes.  相似文献   

17.
Microseismic noise was studied in the frequency range 0.5–30 Hz in the conditions prevailing in the town of Vorkuta. A seismic noise model was developed consisting of power spectral densities of ground motion velocity separately for daytime and nighttime in different frequency ranges. The absolute noise level for frequencies of 1–5 Hz in Vorkuta varies between −140 and −150 dB in daytime and from −152 to −158 dB in nighttime, with the ranges for the 8-15 Hz noise being −140 to −155 dB in daytime and −155 to −165 dB in nighttime. Well-pronounced daily variations in noise amplitude were observed in the frequency ranges 1.5–3 Hz and 14–17 Hz. The noise amplitude varies by 7 dB over 24 hours, with the amplitude of horizontal component variation being 5 dB above that of the vertical component. The power spectral densities of ground motion velocity in the microseismic noise involve several spectral peaks, whose central frequencies did not vary by more than 0.15 Hz during the entire period of instrumental observation. The seismic background in the town of Vorkuta contains seismic events due to distant earthquakes and local industrial explosions.  相似文献   

18.
This paper presents the effects of impedance contrast (IC) across the basin edge, velocity contrast between the basin and underlying bedrock, Poisson’s ratio and soil thickness on the characteristics of basin-transduced Rayleigh (BTR) waves and associated differential ground motion (DGM). Analysis of simulated results for a two-dimensional (2D) basin revealed complex mode transformation of Rayleigh waves after entering the basin. Excellent correlation of frequencies corresponding to different spectral ratio peaks in ellipticity curves of BTR waves and spectral amplification peaks was obtained. However, such correlation was not observed between values of peaks in ellipticity curves and spectral amplification at the corresponding frequencies. An increase of spectral amplification with IC was obtained. The largest spectral amplification was more than twice the IC in the horizontal component and more than the IC in the vertical component in the case of large and same impedance contrast for P- and S-waves. It was concluded that the frequency corresponding to the largest spectral amplification was greater than the fundamental frequency of soil by around 14% and 44% in the vertical and horizontal components, respectively. Spectral amplification of the vertical component was negligible when soil thickness was less than around 15–20 times the S-wave wavelength in the basin. The largest values of peak ground displacement (PGD) and peak differential ground motion (PDGM) were obtained very near the basin edge, and their values with offset from the edge were strongly dependent on the IC across the basin edge, Poisson’s ratio, velocity contrast between the basin and underlying bedrock (dispersion), damping and soil thickness. The obtained value of PDGM for a span of 50 m in the horizontal and vertical components due to the BTR wave was of the order of 0.75 × 10?3 and 1.32 × 10?3 for unit amplitude (1.0 cm) in the horizontal component of the Rayleigh wave at rock very near the basin edge.  相似文献   

19.
A three-layer elastic-gravitational fault displacement model using dislocation theory has been developed and used to examine the effect of layering of earth elastic moduli on surface and subsurface displacement fields for a vertical strike-slip fault. The model has been used to examine the effect of depth variation of elastic properties at coseismic and postseismic time scales. For pure strike-slip motion the effect of gravity on coseismic and postseismic horizontal deformation is negligible. For coseismic deformation the model predicts that (for constant Poisson's ratio) an increase in elastic moduli with depth attenuates the displacements within the upper layers with respect to displacement distribution for a uniform half-space, while an inclusion of a soft layer between the top layer and lower half-space amplifies upper layer displacements. The effect of variation in Poisson's ratio on surface and subsurface displacements has also been examined.The effect of postseismic stress relaxation on surface and subsurface displacements for a three-layer model has been calculated and compared with that of a uniformly relaxed half-space model. Layer 1 is assumed to correspond to the upper crust, layer 2 the lower crust and layer 3 the upper mantle. The effect of postseismic stress relaxation within a uniform half-space and within just the lower crust and upper mantle has been examined. Stress relaxation within the whole half-space decreases the amplitude and shortens the wavelength of displacements, while stress relaxation within the lower two layers increases the amplitude and broadens the wavelength of displacements. The difference between uniform and layered postseismic relaxation is particularly pronounced at the base of the crust.Coseismic and postseismic normal and volumetric strains for a vertical strike-slip fault have also been examined. For a uniformly relaxed half-space model, an increase in normal strains is shown with respect to the coseismic elastic solution, whereas the postseismic volumetric strain is effectively zero. For a three-layer model with stress relaxation in the lower layers only, the normal and volumetric strains within the top elastic layer resemble coseismic strains, while in the lower layers which suffer a rigidity decrease, the postseismic volumetric strain is effectively zero.  相似文献   

20.
马林伟  卢育霞  王良  孙译 《地震工程学报》2016,38(3):373-381,390
研究黄土丘陵河谷场地在地震作用下强地面运动特征的变化情况,可以揭示强震对该类场地上震害的触发机理。结合黄土高原的地貌特征,建立具有代表性的动力数值分析模型,通过输入不同幅值、频谱特性和持续时间的地震波,对起伏地形和覆盖黄土层共同影响下的黄土河谷场地进行地震反应分析。结果表明:黄土层和地形耦合作用控制了地表的PGA变化,使其趋于复杂,在同一输入波不同振幅作用下,与基岩河谷各测点相比,黄土覆盖河谷场地的地震动频谱幅值均有所增加,并且频谱主峰均向高频移动。在不同地震波输入下,场地不同部位的固有频率受地形高程和土层影响;而地震动大小和频谱幅值不仅与场地的基本频谱和地形起伏有关,也与输入地震波的频谱成分相关。输入波PGA与地震频谱特征都不变时,同一场地输出的地震频谱形状具有相似的特征,随着地震持时增长,能量向场地基本频率附近集中,从而可能导致场地上相应频率建筑物震动幅值增加,造成累积破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号