首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During Hercynian low-pressure/high-temperature metamorphism of Palaeozoic metasediments of the southern Aspromonte (Calabria), a sequence of metamorphic zones at chlorite, biotite, garnet, staurolite–andalusite and sillimanite–muscovite grade was developed. These metasediments represent the upper part of an exposed tilted cross-section through the Hercynian continental crust. P–T information on their metamorphism supplements that already known for the granulite facies lower crust of the section and allows reconstruction of the thermal conditions in the Calabrian crust during the late Hercynian orogenic event. Three foliations formed during deformation of the metasediments. The peak metamorphic assemblages grew mainly syntectonically (S2) during regional metamorphism, but mineral growth outlasted the deformation. This is in accordance with the textural relationships found in the lower part of the same crustal section exposed in the northern Serre. Pressure conditions recorded for the base of the upper crustal metasediments are c. 2.5 kbar and estimated temperatures range from <350 °C in the chlorite zone, increasing to 500 °C in the lower garnet zone, and reaching 620 °C in the sillimanite–muscovite zone. Geothermal gradients for the peak of metamorphism indicate a much higher value for the upper crust (c. 60 °C km?1) than for the granulite facies lower crust (30–35 °C km?1). The small temperature difference between the base of the upper crust (620 °C at c. 2.5 kbar) and the top of the lower crust (690 °C at 5.5 kbar) can be explained by intrusions of granitoids into the middle crust, which, in this crustal section, took place synchronously with the regional metamorphism at c. 310– 295 Ma. It is concluded that the thermal structure of the Calabrian crust during the Hercynian orogeny – as it is reflected by peak metamorphic assemblages – was mainly controlled by advective heat input through magmatic intrusions into all levels of the crust.  相似文献   

2.
The Calabrian–Peloritan Hercynian Range includes three weakly metamorphosed Palaeozoic sequences cropping out in north-eastern Sila (Bocchigliero sequence), southern Sila, Serre and Aspromonte (Stilo sequence), and in the Peloritan Mountains (Peloritan sequence). The work reported here considers the Bocchigliero sequence and comprises part of a geological, petrological and geochemical research programme on the Palaeozoic evolution of the Calabrian–Peloritan Arc. The Bocchigliero sequence constitutes the lower tectonic unit of the Hercynian Caiabrian–Peloritan Range and is overthrusted by the metamorphic Mandatoriccio Unit. The Bocchigliero sequence is a terrigenous–carbonate–volcanic association, is affected byclow grade metamorphism, contains Cambro-Ordovician fossils and extends in age from the Cambrian to the Devonian. The terrigenous material is represented by meta-arenites and metapelites (Cambrian–Devonian); the volcanics include metatuffites (Cambrian and Ordovician), metabasalts (Cambro-Ordovician), metaandesites and metarhyolites (Ordovician and Siluro-Devonian); limestone beds are present in the Devonian. It is believed that the Palaeozoic Bocchigliero basin formed in the Cambrian on a continental crust in which the rocks constituting today's Mandatoriccio Unit were located at 3–8 km depth. The crustal thinning in the Cambro-Ordovician led to fracturing and upwelling of alkaline within-plate basaltic magmas, whereas in the Ordovician the thinning took place under conditions of higher plasticity. In this latter period an increase in temperature resulting from mantle upwelling produced crustal partial melts of andesite and rhyolite composition. In addition, this thermal uprise was responsible for regional metamorphism characterized by low pressures and by the absence of penetrative deformation. The effects of this metamorphism are well developed in the rocks of the Mandatoriccio Unit. In the Silurian and Devonian, progressive closing of the basin took place. The Palaeozoic sequence was then subjected to Variscan low pressure–low temperature metamorphism and Alpine deformation.  相似文献   

3.
The structural history of the Hercynian Pyrenees is considered with respect to the relationships between the metamorphism and the successive deformations, the characteristics and mode of emplacement of the gneissic and anatectic cores of the metamorphic domes, the migmatization and the intrusions of plutonic and basic and ultrabasic rocks.The metamorphism can be shown to have progressed upwards with time, attaining the presently exposed levels just before, during and a short time after the major penetrative regional deformation.The intrusion of major plutonic, anatectic and gneissic massifs, which has determined the metamorphic domes in country rocks, was roughly synchronous with the progression of the metamorphism, but seems to have continued later in the uppermost levels.The basic and ultrabasic rocks uplifted by the intrusion of the anatectic cores of the metamorphic domes have been deformed and foliated by the major regional penetrative deformation, thus showing that their intrusion predated this deformation in the lowermost levels.These results, together with the presently available sedimentological data, lead us to propose a dynamic model of the tectonic evolution of the Hercynian Pyrenees.The first step was a crustal extension and thinning, attaining its maximum during Frasnian time, marked in the upper levels by a “ horst and graben” controlled sedimentation and in the lower crust by intrusions of basic magmas and the onset of the very low-pressure metamorphism and anatexis characteristic of the Hercynian Pyrenees.The second step was a crustal shortening marked by large-scale crustal thrusting followed by widespread regional penetrative deformation. The flysch troughs formed in front of the progressing and emerging thrusts. In lower levels, the thrusts are believed to have controlled the progressive ascent of the plutonic and anatectic magmas which continued their uplift and emplacement during major penetrative regional deformation in the actual mesozone and probably after it in the uppermost levels.  相似文献   

4.
The Omeo Metamorphic Complex forms the southern end of the Wagga Metamorphic Belt, which is the main locus of Palaeozoic low-pressure metamorphism in the Lachlan Fold Belt, south-eastern Australia. It comprises metamorphosed Ordovician quartz-rich turbidites originally derived from Precambrian cratonic rocks. Prograde regional metamorphism occurred in the early Silurian, very soon after sedimentation had ceased. The sequence of metamorphic zones, with increasing grade, is: chlorite, biotite, cordierite, andalusite–K-feldspar and sillimanite–K-feldspar. Migmatites occur in the sillimanite–K-feldspar zone, but large bodies of S-type granite were derived from rocks underlying the exposed Ordovician sequence. P and T estimates for the highest grade rocks are T = 700°C and P = 3.5 kbar, indicating a very high P–T gradient of 65°C/km.
The high heat flow during prograde metamorphism probably resulted from a combination of a thermal anomaly persisting from a pre-metamorphic back-arc basin environment, and intrusion of hot, mantle-derived magmas into the lower and middle crust.
Regional retrograde metamorphism coincided with a general reheating of the crust in the Siluro-Devonian, accompanied by intrusion of many I-type plutons and resetting of the K–Ar dates of some earlier plutons. The Omeo Metamorphic Complex was exposed to erosion at this time.  相似文献   

5.
It is speculated that until Late Carboniferous time the region of Hercynian Europe was occupied by an elongated island arc system underlain by a segment of continental crust. In the Upper Carboniferous, two subduction zones are assumed to have extended from the north and south beneath Hercynian Europe. An extensive zone of hot, partially molten upper mantle lay above and between these, and diapiric uprise of portions of this material led to separation of mafic magmas, widespread partial melting in the lower and middle crust, high temperature-low pressure metamorphism in crustal rocks, and regional uplift and extension of the crust, as indicated by intermontane troughs and their associated volcanic rocks.In Visean to Westphalian time Hercynian Europe collided with both the large neighbouring plates North America-Europe and Africa. During these diachronous collisions and owing to reduced rigidity of the relatively hot island arc crust, the irregular continental margins of the larger and thicker continental plates induced oroclinal bending of Hercynian Europe. After the collision processes had been terminated, processes of upper mantle activity continued, causing further crustal uplift and even, enhanced crustal extension for several tens of million years into the Lower Permian. Decline of the upper mantle activity beneath Hercynian Europe is indicated by crustal subsidence and formation of a peneplain in Permian time followed by the Upper Permian transgression of both the Zechstein sea and the Tethys sea which mark the end of the Hercynian geodynamic cycle.  相似文献   

6.
Until the middle of the 20th century, the continental crust was considered to be dominantly granitic. This hypothesis was revised after the Second World War when several new studies led to the realization that the continental crust is dominantly made of metamorphic rocks. Magmatic rocks were emplaced at peak metamorphic conditions in domains, which can be defined by geophysical discontinuities. Low to medium-grade metamorphic rocks constitute the upper crust, granitic migmatites and intrusive granites occur in the middle crust, and the lower crust, situated between the Conrad and Moho discontinuities, comprises charnockites and granulites. The continental crust acquired its final structure during metamorphic episodes associated with mantle upwelling, which mostly occurred in supercontinents prior to their disruption, during which the base of the crust experienced ultrahigh temperatures (>1000 °C, ultrahigh temperature granulite-facies metamorphism). Heat is provided by underplating of mantle-derived mafic magmas, as well as by a massive influx of low H2O activity mantle fluids, i.e. high-density CO2 and high-salinity brines. These fluids are initially stored in ultrahigh temperature domains, and subsequently infiltrate the lower crust, where they generate anhydrous granulite mineral assemblages. The brines can reach upper crustal levels, possibly even the surface, along major shear zones, where granitoids are generated through brine streaming in addition to those formed by dehydration melting in upper crustal levels.  相似文献   

7.
Large volumes of CO2 are emitted during volcanic activity at convergent plate boundaries, not only from volcanic centres. Their C isotopic signature indicates that this CO2 is mainly derived from the decarbonation of subducted limestones or carbonated metabasalts, not as often admitted from magma degassing. On the example of Milos (Aegean Sea) it is argued that these fluids originate from intermediate depth in the mantle and carry sufficient heat to account for the generation of subduction-related magmas, as well as for the geothermal manifestations at the surface. The heat that is required for the decarbonation reactions is drawn by conduction from a wide zone surrounding the subducting slab and then rapidly transported upward by convection of the mixed CO2–H2O fluids that originate from the sediments in the slab. The transport takes place in a focused way through ‘chimneys’ in the upper mantle, where magmas are generated by the introduced heat and water. In the crust, the hot fluids cause thermal-dome-type metamorphism. In volcanic areas, magmas are commonly held responsible for the major part of heat transfer from the mantle to the surface. Here it is argued that most of the heat transfer is by hot gases. To cite this article: R.D. Schuiling, C. R. Geoscience 336 (2004).  相似文献   

8.
U-Pb data on zircons from the largest mafic-ultramafic body (6×2 km) of the French Central Massif (Sauviat-sur-Vige) yield the following age results: Primary magmatic crystallization of the gabbroic and peridotitic protoliths took place in the Cambro-Ordovician (496±25/17 m.y.). Variable transformation under eclogite facies conditions was Hercynian (320±29/36 m.y.). The same age pattern, derived by U-Pb monazite analyses, was found also for the immediate country rocks, i.e. kyanite bearing, coarse-grained metagranites occurring to the W and N of the Sauviat massif. Due to the fact that there is no regional Hercynian high-grade metamorphism in this part of the French Central Massif (e.g. Duthou 1977; Bernard-Griffiths 1975), both mafic-ultramafic complex as well as immediate felsic country rocks must have been emplaced tectonically into pre-Hercynian (Acadian±Caledonian) crustal rocks. The cause for such a Hercynian tectonism is thought to be due to continent-continent collision of the Spanish with the Armorican plate. Preliminary U-Pb zircon results on one eclogite sample taken about 50 km S of the Sauviat complex indicate also an Early Palaeozoic age for the magmatic protolith and a Hercynian transformation into eclogite, combined with and/or followed by tectonic emplacement. However, opposite to the continental Sauviat massif, we are probably dealing here with oceanic material, possibly deposited in an Early Palaeozoic marginal sea basin. Thus, subduction and tectonic emplacement of oceanic crust into continental crust terminated in this area also in the Hercynian. Concerning U-Pb systematics of zircon and monazite the following conclusions can be drawn:
  1. U-Pb systems of primary magmatic zircons of mafic and ultramafic rocks are only weakly disturbed during static eclogite facies metamorphism (T>820° C; P> 15 kbar);
  2. New- and overgrowth of zircon during eclogite facies metamorphism seems to be the major cause for the degree of discordance;
  3. Amphibolitization of metagabbros and eclogites had no effect on the degree of discordance of zircon;
  4. U-Pb systems of monazites remained undisturbed during intense weathering of the mother rock.
  相似文献   

9.
克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用   总被引:11,自引:6,他引:5  
克拉通是大规模成矿的重要构造环境,其边缘产出了众多世界级规模的金、钼、稀土元素矿床。然而,克拉通如何控制巨型矿床的形成与分布尚不十分清楚。文章基于作者和前人的研究成果,探讨了扬子和华北克拉通岩石圈早期金属富集与后期金属活化问题。在全球范围,多数克拉通在其形成之后长期保持稳定,但部分克拉通(如华北、扬子)在克拉通化之后又经历了早期(元古代)增生与晚期(中生代—新生代)改造。在克拉通化及其之后,处于克拉通边缘的大洋岩石圈或克拉通块体间的有限洋盆发生板片俯冲,释放出含金属组分(REE、Cu、Au)的富CO2流体,交代亏损的大陆岩石圈地幔(SCLM),并使之发生交代和金属再富集。俯冲诱发的弧岩浆在大陆下地壳底侵可形成新生下地壳,伴随着少量硫化物的堆积而发生金属(Au、Cu)再富集。由于克拉通相对稳定,新生下地壳在进变质脱水过程中仍能保存部分金属,释放的(含Au)变质流体很可能被封存或固结在地壳的某个部位。在克拉通破坏改造期,软流圈上涌改变克拉通SCLM热结构并诱发其部分熔融,产生富REE的碳酸岩熔体和富水的基性岩浆(如煌斑岩)。前者在浅部地壳侵位并出溶成矿流体,形成碳酸岩型REE矿床;后者在深部地壳脱挥发分(H2O+CO2),诱发新生下地壳重熔和含Au硫化物(和/或含Au流体囊)活化,形成富Au岩浆系统或流体系统。这些深地壳熔/流体沿克拉通边界或岩石圈不连续运移至上部地壳,岩浆系统直接出溶成矿流体,形成以斑岩体为中心的斑岩型Au矿,含Au富CO2流体流沿断裂网络系统活动并沉淀金属,形成石英脉型和蚀变岩型Au矿。伴随克拉通破坏改造,克拉通边界断裂或基底断裂重新活化,并诱发古老下地壳熔融,产生含Mo岩浆系统。这个理论框架不同于已有的造山带成矿理论模式,它解释了克拉通边缘异常富集Au、Mo、REE矿床及其成矿规律,可用于类似克拉通地区的成矿预测。  相似文献   

10.
http://www.sciencedirect.com/science/article/pii/S1674987114000565   总被引:1,自引:0,他引:1  
During granulite-facies metamorphism of metasedimentary rocks by the infiltration of carbonic fluids, the disappearance of hydrated minerals leads to the liberation of aqueous fluids. These fluids are strongly enriched in F and C1, and a series of Large-lon-Lithophile (LIL) elements and rare metals, resulting in their depletion in granulites. To sum up the fate of these elements, we focus on three domains representing different crustal levels and showing distinct behaviours with respect to these elements. The Lapland metasedimentary granulites illustrate the behaviour of the LILE and rare metals during lower crustal metamorphism. There is no change in Ba, moderate loss in Rb, and extreme depletion in Cs, Li, and Sn. F and CI contents are also very low compared to the protoliths or average upper continental crust. Biotite and amphibole breakdown leads to the incorporation of their partitioning into a fluid or a melt. The Tranomaro metasomatized marbles recrystallizing under granulite-facies conditions represent a demonstrative example of fluid transfer from granulite-facies supracrustals to traps represented by regional scale skarns. Such fluids may be at the origin of the incompatible element enrichment detected in leucosomes of migmatites from St Malo in Brittany (France) and Black Hills in South Dakota, The northern French Massif Central provides us with an example of a potential association between incompatible element enrichment of granitic melts and granulite-facies metamorphism. U- and F- enriched fine-grained granites are emplaced along a crustal scale shear zone active during the emplacement within the St Sylvestre peraluminous leucogranitic complex, We propose that during granulite-facies metamorphism dominated by carbonic waves in a deep segment of the continental crust, these shear zones control: (i) the percolation of F-, LILE-, rare metal-rich fluids liberated primarily by the breakdown of biotite; (ii) the enhancement of partial melting by F-rich fluids at intermediate crustal lev  相似文献   

11.
东秦岭-桐柏-大别山碰撞造山带北部早古生代变质火山岩系具有与大洋拉斑玄武岩相似的岩石学、岩石化学及微量元素特征,与镁铁质、超镁铁质岩块、辉绿岩墙群以及变质的沉积岩断片共同构成蛇绿混杂岩带。它们原来形成在华北断块南部大陆边缘的早古生代边缘海盆地的洋壳上。这个边缘海盆地的产生与华南洋壳海域岩石圈断块在晚前寒武纪时期向北俯冲有关,是震旦纪古边缘海继续扩张的结果。在加里东末期到海西早期,扬子断块与华北断块发生碰撞,边缘海闭合。  相似文献   

12.
The northern margin of the Alxa block is the junction of a tectonic units. Four first-order tectonic units are distinguished: 1. the Yagan structural zone characteristic of an immature island arc; 2. the Zhusileng-Hangwula structural zone, which was a passive continental margin in the Early Palaeozoic and was transformed into an active continental margin in the Late Palaeozoic;3. the Shalazha structural zone characteristic of a mature island arc; 4. the Nuru-Langshan structural zone, which was a Proterozoic orogenic belt and later evolved into an extensional transtional crust in the Palaeozoic. The above-mentioned tectonic units differ remarkably in sedimentary formations, magmatic rock associations, metamorphism and geochemistry and are bounded by faults between one another.  相似文献   

13.
The Pirin-Pangaion Structural Zone occupies the south-western part of the Rhodope Massif. It consists of Proterozoic amphibolite facies metamorphic rocks of the Rhodopian Supergroup, and granitoids of Hercynian, Late Cretaceous and Palaeogene age. The pre-Hercynian structure of the zone is dominated by an interference pattern of three superimposed fold generations of NE-SW and NW-SE trends. These structures are cut by Hercynian granitoids, and the entire complex is affected by late Hercynian or early Alpine conical folds. The zone was overthrusted by the Ogražden and Kroussia Units (Serbo-Macedonian ‘Massif’) along the north-east vergent Mid-Cretaceous Strimon overthrust, and by the Central Rhodope Zone of the Rhodope Massif, along the south-west vergent Meso-Rhodopean Overthrust. With this thrusting event, the Pirin-Pangaion Structural Zone was brought together with the Serbo-Macedonian ‘Massif’ and the Central Rhodope Zone to form the Late Cretaceous Morava-Rhodope Zone, which acted as a ‘plateau’ along the southern edge of the Eurasian plate. Late Cretaceous granitoid magma of crustal origin intruded this zone, whereas north of it the Srednogorie volcanic island arc was the site of igneous activity with magmas originating in the upper mantle. The West Thrace Zone developed as a Palaeocene to Oligocene depression superimposed over the older basement obliquely to the southern periphery of the Rhodope Massif. In the Late Eocene and Early Oligocene, this depression represented a volcanic island arc with mantle-derived basic to intermediate magmas; contemporaneous granitoid magmas formed through crustal melting in the thickened crust of the Rhodope Massif (Pirin and Pangaion Units included). Early Miocene thrusting was most intense in the Pangaion Unit, and was followed by Late Miocene to Quaternary extension.  相似文献   

14.
Exposed cross‐sections of the continental crust are a unique geological situation for crustal evolution studies, providing the possibility of deciphering the time relationships between magmatic and metamorphic events at all levels of the crust. In the cross‐section of southern and northern Calabria, U–Pb, Rb–Sr and K–Ar mineral ages of granulite facies metapelitic migmatites, peraluminous granites and amphibolite facies upper crustal gneisses provide constraints on the late‐Hercynian peak metamorphism and granitoid magmatism as well as on the post‐metamorphic cooling. Monazite from upper crustal amphibolite facies paragneisses from southern Calabria yields similar U–Pb ages (295–293±4 Ma) to those of granulite facies metamorphism in the lower crust and of intrusions of calcalkaline and metaluminous granitoids in the middle crust (300±10 Ma). Monazite and xenotime from peraluminous granites in the middle to upper crust of the same crustal section provide slightly older intrusion ages of 303–302±0.6 Ma. Zircon from a mafic to intermediate sill in the lower crust yields a lower concordia intercept age of 290±2 Ma, which may be interpreted as the minimum age for metamorphism or intrusion. U–Pb monazite ages from granulite facies migmatites and peraluminous granites of the lower and middle crust from northern Calabria (Sila) also point to a near‐synchronism of peak metamorphism and intrusion at 304–300±0.4 Ma. At the end of the granulite facies metamorphism, the lower crustal rocks were uplifted into mid‐crustal levels (10–15 km) followed by nearly isobaric slow cooling (c. 3 °C Ma?1) as indicated by muscovite and biotite K–Ar and Rb–Sr data between 210±4 and 123±1 Ma. The thermal history is therefore similar to that of the lower crust of southern Calabria. In combination with previous petrological studies addressing metamorphic textures and P–T conditions of rocks from all crustal levels, the new geochronological results are used to suggest that the thermal evolution and heat distribution in the Calabrian crust were mainly controlled by advective heat input through magmatic intrusions into all crustal levels during the late‐Hercynian orogeny.  相似文献   

15.
Abstract

A new geodynamic model for the Sardinian segment of the Hercynian chain is presented. The improvement of knowledge regarding several geological, metamorphic, magmatic and geochronological aspects of the Sardinian Palaeozoic basement, mainly achieved in the last few years, allows us to propose a more complete picture of its evolution.

The occurrence of remnants of an oceanic suture along a major tectonic lineament in northern Sardinia, as well as the products of Ordovician calc-alkaline magmatism, testifies to the presence, during the Lower Paleozoic, of an ancient (Precambrian- Cambrian) oceanic domain and its consumption along an Andean- type subduction zone. The following Carboniferous continental collision caused crustal stacking with Barrovian metamorphism and southward-migrating deformation from the suture zone toward the foreland.

Early Carboniferous Culm-type facies sediments, deposited in the outermost zone of the chain, imply that continental collision took place earlier in the internal zone, from Late Devonian or Early Carboniferous.

The collisional orogenic wedge experienced ductile extension during the Late Carhoniferous as a result of gravitational collapse of the thickened continental crust.

Extensional tectonism enhanced the uplift of the chain and some regions underwent tectonic denudation or LP/HT metamorphism and somewhere anatexis. The emplacement of calc-alkaline batholiths and the development of Late Carboniferous - Early Permian molasse basins occurred during extension that prolonged throughout the Permian.  相似文献   

16.
Whole rock, electron microprobe analyses and 40Ar/39Ar geochronology of certain ophioliterelated metamorphic rocks from beneath the Pindos, Vourinos, Othris and Euboea ophiolites of Greece show that they were formed mainly from ocean-type basalts, in part under P-T conditions of the upper mantle and that they have ages between 170–180 m.y. The evidence presented is inconsistent with the view that these sub-ophiolite metamorphic rocks were produced by the obduction of ocean-type crust onto a continental margin, or that they are remnant slices of Palaeozoic ‘basement’, but is consistent with their formation by thrusting and related metamorphism occurring within ocean lithosphere during the Lower to Middle Jurassic. It is proposed that this intraoceanic metamorphism was caused by the inception of a fault zone which subsequently became the transport surface for the main phase of ophiolite emplacement that occurred in the Hellenides from the Late Jurassic to Early Cretaceous.  相似文献   

17.
Low pressure-high temperature (LPHT) metamorphism, with geothermal gradients in the order of 50–100°C/km, is a common feature of the late evolution of collisional orogens. These abnormal thermal conditions may be the results of complex interactions between magmatism, metamorphism and deformation. The Agly massif, in the French Pyrenees, preserves the metamorphic footprints of the late Variscan thermal structure of an almost continuous section from the upper and middle continental crust. The upper crust is characterized by a very high geothermal gradient of ~55°C/km, evolving from greenschist to amphibolite facies, while the middle crust, exposed in a gneissic core, exhibits granulite facies conditions with a near isothermal geothermal gradient (<8°C/km) between 740 and 790°C. The abnormal and discontinuous crustal geothermal gradient, dated at c. 305 Ma on syn-granulitic monazite by LA-ICP-MS, is interpreted to be the result of magmatic intrusions at different structural levels in the crust: the Ansignan charnockite (c. 305 Ma) in the deepest part of the gneissic core, the Tournefort granodiorite (c. 308 Ma) at the interface between the gneissic core and the upper crust and the Saint-Arnac granite (c. 304 Ma) in the upper section of the massif. The heat input from these magmas combined with the thermal buffering effect of the biotite dehydration-melting reaction resulted in the near isothermal geothermal gradient in the gneissic core (melt-enhanced geotherm). The higher geothermal gradient (>50°C/km) in the upper crust is only due to conduction between the hot middle crust and the Earth's surface. The estimated maximum finite pressure range suggests that ~10 to 12 km of crust are exposed in the Agly massif while the present-day thickness does not exceed 5–6 km. This pressure/depth gap is consistent with the presence of several normal mylonitic shear zones that could have contributed to the subtraction of ~5 km of the rock pile. Monazite U–Th–Pb ages carried out on monazite overgrowths from a highly mylonitized sample suggest that this vertical thinning of the massif occurred at c. 296–300 Ma. This later Variscan extension might have slightly perturbed the 305 Ma geothermal gradient, resulting in an apparent higher conductive geothermal gradient in the upper crust. Although the Agly massif has been affected by Cretaceous extension and Eocene Alpine compression, we suggest that most of the present-day thickness of the column rock was acquired by the end of the Palaeozoic.  相似文献   

18.
Abstract The northern margin of the Alxa block is the junction of a tectonic units. Four first—order tectonic units are distinguished: 1. the Yagan structural zone characteristic of an immature island arc; 2. the Zhusileng—Hangwula structural zone, which was a passive continental margin in the Early Palaeozoic and was transformed into an active continental margin in the Late Palaeozoic; 3. the Shalazha structural zone characteristic of a mature island arc; 4. the Nuru—Langshan structural zone, which was a Proterozoic orogenic belt and later evolved into an extensional transitional crust in the Palaeozoic. The above—mentioned tectonic units differ remarkably in sedimentary formations, magmatic rock associations, metamorphism and geochemistry and are bounded by faults between one another.  相似文献   

19.
U-Pb data of zircons from various gneisses of the eastern Sierra de Guadarrama, Central Spain, make it possible to reconstruct the pre-Hercynian and Hercynian history of this area: (1) upper intercept ages (2400 Ma for meta-igneous and 2000 Ma for meta-sedimentary rocks) of discordias defined by data of anhedral zircon fractions document the existence of Early Proterozoic crust; (2) lower intercept minimum ages of anhedral zircon fractions show radiogenic lead loss at about 540 Ma due to a thermal event leading to volcanism and emplacement of granitoid rocks into Precambrian crust: growth of euhedral zircons is possibly related to this event; (3) lower intercept minimum ages of about 380 Ma defined by anhedral zircon fractions in meta-sedimentary rocks prove an Early Hercynian event. According to present knowledge on the metamorphism in the Sierra de Guadarrama this event could be explained in terms of a Barrow-type medium-pressure metamorphism. The inferred Cadomian igneous event relates the geological history of Central Spain with that of western Africa to the south and Brittany to the north. Furthermore, similarities of the crustal evolution in the area studied and other internal zones of the Hercynian belt (Moldanubian zone, French Central Massiv) are confirmed. The Early Hercynian event for the first time affected all the rocks of the area together. The pre-Hercynian evolution of the two complexes is different and the present association of the basement rocks may be explained by thrusting or in terms of Early-Hercynian nappe transport.  相似文献   

20.
Three Palaeozoic sequences belonging to three different basins crop out in the Calabrian–Peloritan Arc. Their age covers the time span from middle (?) Cambrian to early Carboniferous. The sequences comprise terrigenous, volcanic and carbonate rocks, and show low-grade metamorphism. The basement is of pre-middle Cambrian age, crops out in the Calabrian–Peloritan Arc, and was metamorphosed prior to the opening to the Palaeozoic basins. The Palaeozoic basins existed no later than the middle Carboniferous, with inferred maximum crustal extension in the Cambro-Ordovician. By Devonian time, the tectonic regime was compressional overall with middle Devonian island-arc type volcanic activity that continued until the closure of the basins. Approximately 330 Myr, the Palaeozoic sequences experienced low-pressure greenschist facies metamorphism and continuing subduction controlled the Variscan tectonogenesis with 280 Myr island-arc type intrusive magmas. Subduction ceased and late-stage 280–270 Myr granitic magmas were emplaced during continental collision. The crustal sector carrying the Palaeozoic basins is interpreted as comprising fragments of an active continental margin, one of the several microplates, located at the southern margin of the Euro-Asia continent which faced a large (at least 1500 km in width) ocean basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号