首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Giuseppe Barbaro   《Ocean Engineering》2007,34(11-12):1706-1710
Here, an easy analytical solution for the direct calculation of the instant in which the maximum wave force on a support of an offshore platform is realized, and for the direct estimation of the aforementioned maximum force. The solution is obtained thanks to an artifice. The instant is expressed tm of the maximum force as limits of a succession tm0, tm1, tm2,…, and it is proved that in cases of practical interests the successions converge very quickly: tm=tm1, less than negligible errors.The solution allows the estimate of useful synthesis to be arrived at in the preliminary phase of the project. In fact, it allows one to immediately appreciate the effects of variations of the parameters in play: the sections of the cylinder, the depth of the sea floor and the characteristics of the waves.  相似文献   

2.
The hydrodynamic pressures induced by regular waves around the circumference of a pipeline normal to the wave direction and near a rigid bed of slope 1:10 have been investigated in a wave flume. The pressures were integrated to obtain the force time history, from which the peak horizontal and vertical forces are evaluated. The maximum and root mean square horizontal and transverse force coefficients are correlated with the Keulegan–Carpenter (KC) number. The effect of the distance between the sloping bed and the pipeline on the force coefficients is discussed. The force coefficients are found to decrease with an increase in KC number and with the decrease in the relative clearance of the pipeline from the boundary. In addition, the reflection characteristics of the sloping bed in the presence of the pipeline as a function of surf similarity parameter and their comparison with the results from existing literature are also reported. The details of the model setup, experimental procedure, results and discussion are presented in this paper.  相似文献   

3.
Nobuhito Mori   《Ocean Engineering》2003,30(2):658-220
The experimental studies of the breaking effects on wave statistics for deep-water random waves are presented. It is especially focused on the behavior of kurtosis of surface elevations due to wave breaking. Wave breaking suppresses the maximum limit of kurtosis of the surface elevation, although skewness depends on characteristic wave steepness. The mean instantaneous wave steepness of breaking waves defined using the zero-down-crossing method was much lower than expected from the Stokes waves.  相似文献   

4.
Felice Arena   《Ocean Engineering》2002,29(4):359-372
To the first order in a Stokes expansion, the pressure force exerted by a sea state on a large horizontal cylinder represents a stationary random Gaussian process. A relationship is obtained between the spectrum of this process and the wave spectrum. As a consequence, the basic statistical properties of the height and period of the individual waves of the force-process are also obtained. It is proven that these statistical properties agree very well with the data from a small scale field experiment.  相似文献   

5.
A comparison of the diffraction of multidirectional random waves using several selected wave spectrum models is presented in this paper. Six wave spectrum models, Bretschneider, Pierson–Moskowitz, ISSC, ITTC, Mitsuyasu, and JONSWAP spectrum, are considered. A discrete form for each of the given spectrum models is used to specify the incident wave conditions. Analytical solutions based on both the Fresnel integrals and polynomial approximations of the Fresnel integrals and numerical solutions of a boundary integral approach have been used to obtain the two-dimensional wave diffraction by a semi-infinite breakwater at uniform water depth. The diffraction of random waves is based on the cumulative superposition of linear diffraction solution. The results of predicted random wave diffraction for each of the given spectrum models are compared with those of the published physical model presented by Briggs et al. [1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering—ASCE 121(1), 23–35]. Reasonable agreement is obtained in all cases. The effect of the directional spreading function is also examined from the results of the random wave diffraction. Based on these comparisons, the present model for the analysis of various wave spectra is found to be an accurate and efficient tool for predicting the random wave field around a semi-infinite breakwater or inside a harbor of arbitrary geometry in practical applications.  相似文献   

6.
Experiments were performed in a wave flume to measure the intensity, transmission and reflection of waves breaking over a submerged reef with an offshore gradient of 1:10. The results demonstrate that the relative water depth over the reef crest (hc/Ho) is a dominant factor affecting the breaking characteristics. In particular it is found that as the relative crest submergence is reduced, there is a considerable increase in the intensity of wave breaking over the reef that can be quantified through measurements of the air cavity enclosed beneath the plunging jet. It is also shown that there is a corresponding decrease in wave transmission and reflection as the submergence is reduced.  相似文献   

7.
The wave height distribution with Edgeworth’s form of a cumulative expansion of probability density function (PDF) of surface elevation are investigated. The results show that a non-Gaussian model of wave height distribution reasonably agrees with experimental data. It is discussed that the fourth order moment (kurtosis) of water surface elevation corresponds to the first order nonlinear correction of wave heights and is related with wave grouping.  相似文献   

8.
The existence of empty envelope excursions (EEE) brings error to the envelope approach of wave group statistics, which identifies wave group by envelope upcrossing of a critical level. A group number correction scheme is suggested in this paper to exclude EEE from wave group statistics. To this end, the Ditlevson and Lindgren [J. Sound Vib. 122 (1988) 571] theory about the fraction of empty excursion envelopes (FEEE) is examined to see if it fits for ocean waves. The sea waves are simulated with Monte Carlo method and with P-M and JONSWAP spectrums. The values of FEEE of the simulated waves are investigated and compared with the theory of Ditlevson and Lindgren. The comparison shows that, at the second-order approximation, theoretical predictions of FEEE are close to those derived from simulations. This approximate analytical expression of FEEE is then employed to form a group number correction scheme. Comparisons between numerical and theoretical results of wave group properties show that this correction scheme is quite effective.  相似文献   

9.
Based on the second-order random wave theory, the joint statistical distribution of the horizontal velocity and acceleration is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random wave forces are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. It is found that the distribution of wave forces depends solely on the frequency spectrum of sea waves associated with the first order approximation and the second order wave–wave interaction.  相似文献   

10.
The numerical investigation of random wave slamming on superstructures of marine structures in the splash zone is presented in this paper. The impact pressures on the underside of the structure are computed based on the improved volume of fluid method (VOF). The governing equations are Reynolds time-averaged equations and the two equation k model. The third order upwind difference scheme is applied to the convection term to reduce the effect of numerical viscosity. The numerical wave flume with random wave-maker suitable for VOF is established. Appropriate moving contact-line boundary conditions are introduced to the model wave in contact with and separated from the underside of structure. Parametric studies have been carried out for different incident waves, structure dimensions and structure clearance. The numerical results are verified by the experimental results.  相似文献   

11.
S Neelamani 《Ocean Engineering》2004,31(13):1601-1621
Investigations on sub aerial wave pressures and layer thickness on plane impermeable and non-overtopping seawallns were carried out by using physical model studies. Seawalls with slopes of 1:3, 1:4 and 1:6 were used. JONSWAP spectrum with significant wave height, Hs from 0.08 to 0.2 m and peak periods, Tp from 1.5 to 6.0 s and a constant water depth of 0.7 m is used. Based on extensive measurements, empirical formulas for practical applications are proposed to predict the maximum, significant and mean sub aerial random wave pressure and layer thickness (thickness of water layer perpendicular to the still water level on the run-up zone) by using the surf similarity parameter, significant wave height and elevation on the sub aerial region as inputs. It is found that the maximum layer thickness is 1.11 times the significant layer thickness and maximum sub Arial wave pressure is 1.06 times the significant wave pressures. The predictive equations based on extensive measurements can be used for the design of non-overtopping seawalls.  相似文献   

12.
The response of a long flexible cylinder excited by random waves in a large model basin was investigated. The linear and non-linear physical mechanisms associated with the wave–cylinder interaction were analysed using system identification and modelling techniques. A third-order frequency domain Volterra model and its orthogonalized counterpart were used to analyse the relationships between wave elevations at various locations in the vicinity of the cylinder and cylinder acceleration data at various cylinder longitudinal locations. It was found that linear mechanisms dominate, particularly at the frequency band where the majority of the wave energy is located. At higher frequencies, the cubic component of the Volterra model is the main contributor to the total model coherence, i.e. the fraction of the measured output power that can be approximated by the model output, whereas the quadratic component's contribution to the total model coherence was in general quite small. This process of identification and quantification of the non-linear mechanisms of the unknown physical system can lead to the design of improved parametric models for the cylinder response, which should by design simulate non-linearities such as the ones identified by the Volterra model. The estimated linear and non-linear Volterra transfer functions were also used to predict the cylinder acceleration under excitation inputs not used in the estimation of the model transfer functions. The good match between predicted and measured output auto-power spectra suggests that the estimated transfer functions are indeed true models of the underlying physical mechanisms of the interaction. However, the latter can only be achieved if a minimum number of data segments, as determined by an error analysis involving modelling and prediction errors, is used in the estimation of the Volterra transfer functions.  相似文献   

13.
On the effects of wave drift on the dispersion of floating pollutants   总被引:1,自引:0,他引:1  
The movement of floating pollutants such as oil slicks on the surface of the sea is due to a number different factors, among which wave drift is certainly significant.In principle, it has been known since Stokes' time that a floating particle is subject to the movement caused by the orbital motion of water particles and that an average drift velocity results because the trajectories are not closed. In the past, however, this effect was often either disregarded or simply included with the surface wind induced current. In recent times the difference between the two effects has been conceptually clarified, so that the average wave drift in random one-dimensional seas has been the object of research and the results are now included in most handbooks and models for oil slick forecasting.Due to the chaotic nature of the wave field, however, the drift also causes floating substances to disperse, and this phenomenon is a much more neglected area of research. Recent work by Bovolin et al. [IAHR Congress, 1997] and Sobey and Barker [J. Coast. Res. 13 (1997)] has brought the subject to attention, and computational tools can now be made to quantify the effect and to verify when and how it should be taken into consideration in oil slick accident practise.The work presented in this paper is based on random simulation of the wave induced Eulerian velocity field in a directional sea, by making use of standard offshore wave directional models and on the ensemble averaging of floating particles trajectories in order to compute the spatial dispersion.  相似文献   

14.
The unsteady, two-dimensional Navier–Stokes equations and the exact free surface boundary conditions were solved to study the interaction of a solitary wave and a submerged dike. A piston-type wavemaker was set up in the computational domain to produce the incident solitary waves. The incident wave and the associated boundary layer flow in a wave tank with a flat bed were compared with the analytical solutions to verify the accuracy of this numerical scheme. Effects of the incident wave height and the size of the dike on the wave transformation, the flow fields, and the drag forces on the dike were discussed. Our numerical results showed that even though the induced local shear stress on the top surface of the dike is large at some particular locations, the resultant pressure drag is much larger than the friction drag. The primary vortex generated at the lee side of the dike and the secondary vortex at the right toe of the dike may scour the bottom and cause a severe problem for the dike.  相似文献   

15.
The substructures of offshore wind turbines are subjected to extreme breaking irregular wave forces. The present study is focused on investigating breaking irregular wave forces on a monopile using a computational fluid dynamics (CFD) based numerical model. The breaking irregular wave forces on a monopile mounted on a slope are investigated with a numerical wave tank. The experimental and numerical irregular free surface elevations are compared in the frequency-domain for the different locations in the vicinity of the cylinder. A numerical analysis is performed for different wave steepness cases to understand the influence of wave steepness on the breaking irregular wave loads. The wave height transformation and energy level evolution during the wave shoaling and wave breaking processes is investigated. The higher-frequency components generated during the wave breaking process are observed to play a significant role in initiating the secondary force peaks. The free surface elevation skewness and spectral bandwidth during the wave transformation process are analysed and an investigation is performed to establish a correlation of these parameters with the breaking irregular wave forces. The role of the horizontal wave-induced water particle velocity at the free surface and free surface pressure in determining the breaking wave loads is highlighted. The higher-frequency components in the velocity and pressure spectrum are observed to be significant in influencing the secondary peaks in the breaking wave force spectrum.  相似文献   

16.
分层流体中细长体波浪力的数值计算   总被引:3,自引:0,他引:3  
利用边界元法计算了层化流体中细长体受到的一阶垂荡波浪力和一阶纵摇波浪力矩,计算了近水面细长体的波浪力及力矩,与水池实验结果相吻合。  相似文献   

17.
In this work, we carried out an asymptotic analysis, up to the second order in a regular expansion, of the interaction of linear long waves with an impermeable, fixed, submerged breakwater composed of wavy surfaces. Below the floating breakwater, there is also a step with a wavy surface. The undulating surfaces are described by sinusoidal profiles. The effects of three different geometric parameters — the amplitude of the wavy surfaces and the submerged length and width of the structure — on the reflection and transmission coefficients are analyzed. The hydrodynamic forces are also determined. The governing equations are expressed in dimensionless form. Using the domain perturbation method, the small wavy surfaces of the breakwater are linearized. The wavy surfaces of the breakwater generate larger values of the reflection coefficient than those obtained for breakwaters with flat surfaces, and the largest values of this coefficient are obtained when the length of the breakwater is of the same order of magnitude as the wavelength. The asymptotic solution is compared with the theoretical solutions that have been reported in the specialized literature and with a numerical solution. The present mathematical model can be used as a practical reference for the selection of the geometric configuration of a submerged floating breakwater under shallow flow conditions.  相似文献   

18.
A two-equation k– turbulence model is used in this paper to simulate the propagation of cnoidal waves over a submerged bar, where the free surface is handled by the volume-of-fluid (VOF) method. Using a VOF partial-cell variable and a donor–acceptor method, the model is capable of treating irregular boundaries, including arbitrary bottom topography and internal obstacles, where the no-slip condition is satisfied. The model also allows the viscous sublayer to be modeled by a wall function approximation implemented in the grid nodes that are immediately adjacent to a wall boundary. The numerical model applied to the propagation of cnoidal waves over a submerged bar can produce results that are in general agreement with some laboratory measurements. Some remarks arising from the comparison between the computational and experimental results are presented.  相似文献   

19.
Nonlineareffectoninertiacomponentofwaveforcesonacylinder¥LiYanbaoandSongReng(DepartmentofHydraulicEngineering,TianjinUniversi...  相似文献   

20.
The research into hydrodynamic loading on ocean structures has concentrated mostly on circular cross-section members and relatively limited work has been carried out on wave loading on other cross-sections such as rectangular sections. These find applications in many offshore structures as columns and pontoons in semi-submersibles and tension-leg platforms. The present investigation demonstrates the behaviour of rectangular cylinders subject to wave loading and also supplies the hydrodynamic coefficients for the design of these sections.This paper presents the results of wave forces acting on a surface piercing truncated rectangular cylinder set vertically in a towing tank. The experiments are carried out in a water depth of 2.2 m with regular and random waves for low Keulegan–Carpenter number up to 6. The rectangular cylinder is of 2 m length, 0.2 m breadth and 0.4 m width with a submergence depth of 1.45 m from still water level. Based on Morison equation, the relationship between inertia and drag coefficients are evaluated and are presented as a function of KC number for various values of frequency parameter β, for two aspect ratios of cylinders, equals to 1/2 and 2/1. Drag and inertia coefficients obtained through regular wave tests are used for the random wave analysis to compute the in-line force spectrum.The results of the experiments show the drag and inertia coefficients are strongly affected by the variation in the aspect ratios of the cylinder. The drag coefficients decreases and inertia coefficients increases with increase in Keulegan–Carpenter number up to the range of KC number tested. The random wave results show a good correlation between measured and computed force spectrums. The transverse forces in both regular and random waves are found to be small compared to in-line forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号