共查询到20条相似文献,搜索用时 14 毫秒
1.
激发极化法在金属矿、硫化矿等资源勘探方面应用较广.随着勘探设备与计算机硬件的发展,所采集到的数据具有观测数据量大、布极方式多样等特点.针对实测数据的特点,我们研究完成了基于并行技术的激发极化法对数反演算法,该算法具有如下特点:(1)通过压缩存储技术和并行技术的集成实现了可以处理大数据特征的反演算法;(2)利用对数反演来约束每次计算得到新模型的电导率恒为正,充电率在0到1之间变化,从而保证反演的稳定性和可靠性.本文首先设计了两组对比模型进行试验,通过对不同区块数据采用不同加权的方式来减弱噪声对反演结果影响的效果;其次,采用并行技术提高了反演的计算速度,并利用理论模型分析了不同电极装置对反演分辨率的影响.最后,在甘肃某金属矿开发前景区利用激发极化法开展了中梯装置的采集工作,利用加权后的观测数据反演推断出了测区金属矿开发靶区的大致位置及分布特征. 相似文献
2.
瞬变电磁反演存在高度的非线性特征,常用的最小二乘等线性反演方法往往对初始模型高度依赖,并且极易陷入局部最优解.本文基于观测数据与模拟数据的L1范数建立目标函数,采用模拟退火非线性全局最优化方法实现瞬变电磁一维反演.初始模型完全随机产生,通过指数函数退温机制模拟系统能量最小实现迭代,通过接收概率函数评价当前模型,实现局部最优解的跳出,最终实现全局最优化求解.通过数值算例发现,无论给定的反演层数等于还是大于设计模型,都可以获得较好的反演效果,因而可以在反演初始就设计较多的层数,实现反演模型的自动拟合;同时,利用含噪声数据反演进一步验证算法的稳定性.最后,对实测数据进行了反演测试,结果与钻孔编录基本一致,表明提出的基于L1范数的模拟退火反演可用于实测数据处理. 相似文献
3.
It is proposed that the Straightforward Inversion Scheme (SIS) developed by the authors for 1D inversion of resistivity sounding and magneto-telluric sounding data can also be used in similar fashion for time-domain induced polarization sounding data. The necessary formulations based on dynamic dipole theory are presented. It is shown that by using induced polarization potential, measured at the instant when steady state current is switched off, an equation can be developed for apparent ‘chargeability–resistivity’ which is similar to the one for apparent resistivity. The two data sets of apparent resistivity and apparent chargeability–resistivity can be inverted in a combined manner, using SIS for a common uniform thickness layer earth model to estimate the respective subsurface distributions of resistivity and chargeability–resistivity. The quotient of the two profiles will give the sought after chargeability profile. A brief outline of SIS is provided for completeness. Three theoretical models are included to confirm the efficacy of SIS software by inverting only the synthetic resistivity sounding data. Then one synthetic data set based on a geological model and three field data sets (combination of resistivity and IP soundings) from diverse geological and geographical regions are included as validation of the proposal. It is hoped that the proposed scheme would complement the resistivity interpretation with special reference to shaly sand formations. 相似文献
4.
粒子群优化算法(PSO)是模仿鸟群寻找食物的社会行为的一种全局最优化算法,在多维空间函数寻优、动态目标寻优等方面有着收敛速度快、解质量高且需要设置的参数较少等优点.本文在研究常规粒子群优化算法的基础上,对常规的粒子群算法进行了改进,提出了一种新的惯性权重ω参数振荡递减策略,加快了PSO算法的收敛速度,构造的新算法称为阻尼粒子群优化算法.在MATLAB 6.5 编程环境中对阻尼PSO算法进行了数值实验,并对大地电磁测深的理论模型和实测数据进行了反演试算,结果表明,阻尼PSO算法不依赖于初始模型、能够搜索到全局极值,不易陷入局部极值,是一种快速有效的地球物理反演方法. 相似文献
5.
提出了非线性共轭梯度法大地电磁拟三维反演.该方法选取共轭梯度反演算法为拟三维反演的核心.在计算灵敏度(Jacobian)矩阵时,吸取近似灵敏度矩阵思想,采用一维灵敏度矩阵来代替三维灵敏度矩阵,并对非测点的灵敏度元素提出一种近似方法.在第一次反演之后,采用拟牛顿法更新灵敏度矩阵.拟三维反演法在很大程度上节省了计算时间,并且理论模型和实际资料的反演试算结果表明大地电磁拟三维反演法具有一定的实用价值. 相似文献
6.
We advance a principle directed to assigning numerical values to free parameters usually present in inversion methods. It may be formulated as: ‘Optimum estimates of free parameters in an inversion procedure must lead, in tests using synthetic data, to solutions whose geometrical expression reflects the main qualitative or semiquantitative geological characteristic of the study area.’ To this end, the interpreter should (i) specify a typical anomalous source geometry which incorporates the most relevant geological information for the study area, (ii) compute the corresponding gravity anomaly and (iii) invert the anomaly for the source geometry finding the numerical values of the free parameters that lead to a solution closest to the typical source. Application of the above methodology to synthetic and real data from the basement relief of a rift basin has asserted its efficacy. 相似文献
8.
The increased popularity of airborne measurements of the gravity gradient tensor for resource studies and geological mapping has resulted in a new awareness of the importance of terrain effects. In these measurements, the terrain effect often overwhelms that of the underlying crust and it becomes important to formulate a strategy for taking it into account when presenting the data and when inverting the data into density models. Using newly acquired data from Northern Sweden, we first attempted to estimate a variable terrain density model by inverting the data using a terrain model with a laterally varying density. Using data weights related to the topography variations, we find the best estimate of the lateral variation of the terrain density. We translate this model into a full three-dimensional model such that all columns have the same vertical centre of mass as estimated from inspecting the radially averaged power spectrum of the area. This then defines a reference model for subsequent three-dimensional inversion of the gravity gradient tensor dataset. We tested this approach first on synthetic data calculated from the measured topography including two density anomalies before we applied it to the measured data. The result is a model in which the surface density variations are propagated downwards in a systematic manner now in better agreement with measured densities of rock samples in the area. 相似文献
9.
A transmission + reflection wave-equation traveltime and waveform inversion method is presented that inverts the seismic data for the anisotropic parameters in a vertical transverse isotropic medium. The simultaneous inversion of anisotropic parameters and ε is initially performed using transmission wave-equation traveltime inversion method. Transmission wave-equation traveltime only provides the low-intermediate wavenumbers for the shallow part of the anisotropic model; in contrast, reflection wave-equation traveltime estimates the anisotropic parameters in the deeper section of the model. By incorporating a layer-stripping method with reflection wave-equation traveltime, the ambiguity between the background-velocity model and the depths of reflectors can be greatly mitigated. In the final step, multi-scale full-waveform inversion is performed to recover the high-wavenumber component of the model. We use a synthetic model to illustrate the local minima problem of full-waveform inversion and how transmission and reflection wave-equation traveltime can mitigate this problem. We demonstrate the efficacy of our new method using field data from the Gulf of Mexico. 相似文献
10.
In recent years, surface-wave analysis method has been developed rapidly in many fields. Multichannel analysis of surface waves can provide near-surface one-dimensional shear-wave velocity profiles. Because linearized inversion of surface-wave dispersion curves relies heavily on the choice of the initial model, setting an inappropriate initial model can lead to poor inversion results, or even failure of inversion. However, it is difficult to establish a reasonable initial model without a priori information, which is unavailable in most cases. To cope with this problem, a multiscale linearized inversion method is proposed for surface-wave dispersion curves inversion. In contrast with the traditional single-scale linearized inversion, the key idea of the proposed multiscale surface-wave inversion method is the introduction of a merging and splitting process of layers. After every scale inversion, the merging and splitting operations automatically optimize the inversion model, making it gradually approach to a reasonable subsurface stratification. Multiscale surface-wave inversion method reduces the difficulty of establishing the initial model and has high computational efficiency. In addition, it has strong ability to identify high-velocity or low-velocity interlayers and thin layers, especially suited for the geological conditions with obvious stratification. In synthetic tests, the proposed method was compared with the single-scale surface-wave inversion and particle swarm optimization algorithm to demonstrate the effectiveness and practicability of multiscale surface-wave inversion method. We also applied the multiscale surface-wave inversion method to field seismic data acquired in Guizhou, China and Texas, USA. Borehole and crosshole test data were compared with the inversion results of field data to prove the reliability of the proposed method. 相似文献
11.
Multiparameter inversion for pre‐stack seismic data plays a significant role in quantitative estimation of subsurface petrophysical properties. However, it remains a complicated problem due to the non‐unique results and unstable nature of the processing; the pre‐stack seismic inversion problem is ill‐posed and band‐limited. Combining the full Zoeppritz equation and additional assumptions with edge‐preserving regularisation can help to alleviate these problems. To achieve this, we developed an inversion method by constructing a new objective function that includes edge‐preserving regularisation and soft constraints based on anisotropic Markov random fields and is intended especially for layered formations. We applied a fast simulated annealing algorithm to solve the nonlinear optimisation problem. The method directly obtains reflectivity RPP values using the full Zoeppritz equation instead of its approximations and effectively controls the stability of the multiparameter inversion by assuming a sectionally constant S‐ and P‐wave velocity ratio and using the generalised Gardner equation. We substituted the inverted parameters, i.e., the P‐wave velocity, the fitting deviation of S‐wave velocity, and the density were inverted instead of the P‐wave velocity, the S‐wave velocity, and the density, and the generalised Gardner equation was applied as a constraint. Test results on two‐dimensional synthetic data indicated that our substitution obtained improved results for multiparameter inversion. The inverted results could be improved by utilising high‐order anisotropic Markov random field neighbourhoods at early stages and low‐order anisotropic Markov random field neighbourhoods in the later stages. Moreover, for layered formations, using a large horizontal weighting coefficient can preserve the lateral continuity of layers, and using a small vertical weighting coefficient allows for large longitudinal gradients of the interlayers. The inverted results of the field data revealed more detailed information about the layers and matched the logging curves at the wells acceptably over most parts of the curves. 相似文献
12.
Inversion of gravity and/or magnetic data attempts to recover the density and/or magnetic susceptibility distribution in a 3D earth model for subsequent geological interpretation. This is a challenging problem for a number of reasons. First, airborne gravity and magnetic surveys are characterized by very large data volumes. Second, the 3D modelling of data from large‐scale surveys is a computationally challenging problem. Third, gravity and magnetic data are finite and noisy and their inversion is ill posed so regularization must be introduced for the recovery of the most geologically plausible solutions from an infinite number of mathematically equivalent solutions. These difficulties and how they can be addressed in terms of large‐scale 3D potential field inversion are discussed in this paper. Since potential fields are linear, they lend themselves to full parallelization with near‐linear scaling on modern parallel computers. Moreover, we exploit the fact that an instrument’s sensitivity (or footprint) is considerably smaller than the survey area. As multiple footprints superimpose themselves over the same 3D earth model, the sensitivity matrix for the entire earth model is constructed. We use the re‐weighted regularized conjugate gradient method for minimizing the objective functional and incorporate a wide variety of regularization options. We demonstrate our approach with the 3D inversion of 1743 line km of FALCON gravity gradiometry and magnetic data acquired over the Timmins district in Ontario, Canada. Our results are shown to be in good agreement with independent interpretations of the same data. 相似文献
13.
Although seismic sources typically consist of identical broadband units alone, no physical constraint dictates the use of only one kind of device. We propose an acquisition method that involves the simultaneous exploitation of multiple types of sources during seismic surveys. It is suggested to replace (or support) traditional broadband sources with several devices individually transmitting diverse and reduced frequency bands and covering together the entire temporal and spatial bandwidth of interest. Together, these devices represent a so‐called dispersed source array. As a consequence, the use of simpler sources becomes a practical proposition for seismic acquisition. In fact, the devices dedicated to the generation of the higher frequencies may be smaller and less powerful than the conventional sources, providing the acquisition system with increased operational flexibility and decreasing its environmental impact. Offshore, we can think of more manageable boats carrying air guns of different volumes or marine vibrators generating sweeps with different frequency ranges. On land, vibrator trucks of different sizes, specifically designed for the emission of particular frequency bands, are preferred. From a manufacturing point of view, such source units guarantee a more efficient acoustic energy transmission than today's complex broadband alternatives, relaxing the low‐ versus high‐frequency compromise. Furthermore, specific attention can be addressed to choose shot densities that are optimum for different devices according to their emitted bandwidth. In fact, since the sampling requirements depend on the maximum transmitted frequencies, the appropriate number of sources dedicated to the lower frequencies is relatively small, provided the signal‐to‐noise ratio requirements are met. Additionally, the method allows to rethink the way to address the ghost problem in marine seismic acquisition, permitting to tow different sources at different depths based on the devices' individual central frequencies. As a consequence, the destructive interference of the ghost notches, including the one at 0 Hz, is largely mitigated. Furthermore, blended acquisition (also known as simultaneous source acquisition) is part of the dispersed source array concept, improving the operational flexibility, cost efficiency, and signal‐to‐noise ratio. Based on theoretical considerations and numerical data examples, the advantages of this approach and its feasibility are demonstrated. 相似文献
14.
Prestack seismic inversion plays an important role in estimating elastic parameters that are sensitive to reservoirs and fluid underground. In this paper, a simultaneous inversion method named FMR‐AVA (Fluid Factor, Mu (Shear modulus), Rho (Density)‐Amplitude Variation with Angle) is proposed based on partial angle stack seismic gathers. This method can be used for direct inversion for the fluid factor, shear modulus and density of heterogeneous reservoirs. Firstly, an FMR approximation equation of a reflection coefficient is derived based on poroelasticity with P‐ and S‐wave moduli. Secondly, a stable simultaneous AVA inversion approach is presented in a Bayesian scheme. This approach has little dependence on initial models. Furthermore, it can be applied in heterogeneous reservoirs whose initial models for inversion are not easy to establish. Finally, a model test shows the superiority of this FMR‐AVA inversion method in stability and independence of initial models. We obtain a reasonable fluid factor, shear modulus and density even with smooth initial models and moderate Gaussian noise. A real data case example shows that the inverted fluid factor, shear modulus and density fit nicely with well log interpretation results, which verifies the effectiveness of the proposed method. 相似文献
15.
地面资料全波形反演采用低波数回折波敏感核和高波数偏移等时线恢复地下模型的长波长和短波长分量.当回折波的穿透深度有限时,很容易陷入局部极值.波动方程反射波走时反演采用反射波的透射敏感核更新速度模型.当浅层速度存在较大误差时,仍无法得到满意的反演结果.VSP资料中直达波是一种透射波,穿透深度大,可用于井旁背景速度场建模.本文发展了针对VSP观测方式的波动方程走时联合反演(直达波和反射波)方法.采用全局优化参数反演法实现VSP上下行波和纵横波分离,构建了基于下行直达波和上行反射波走时残差的混合目标函数,推导了相应的伴随状态方程和梯度公式,给出了背景速度和反射系数分步反演流程.理论和实际VSP资料应用表明:直达波和反射波走时联合反演可以得到运动学特征精确的速度模型,为后续全波形反演提供可靠的初始模型;联合反演比单独直达波/反射波走时反演的精度高,比直达波和反射波走时级联反演的耗时少. 相似文献
16.
提出了CSAMT方法测深的遗传算法反演,比较传统的线性反演方法,其对初始模型依赖性小,全局寻优能力强,适用于在地下电性参数比较模糊的条件下对测深曲线进行反演.本文设计多种理论模型进行模拟,证明该算法精度高,可行性强. 相似文献
17.
利用NECESSArray宽频带地震台阵记录的P波三重震相波形资料,采用遗传算法,对千岛俯冲板块内部及附近410-km间断面的结构进行了非线性反演.其中,选取了发生在俯冲带的发震时刻为2009年10月10日21时24分(GMT时间)震级为Mw5.9的地震;其三重震相的射线回折点处射线路径的方向与俯冲板块的走向大致一致,克服了间断面在俯冲板块内部沿俯冲方向起伏剧烈、不易识别的困难,设计以震中为顶点、方位角范围分别为275°~280°、269°~274°、264°~266°的北、中、南三个扇形区域,用于研究410-km间断面逐渐靠近俯冲板块直至处在其中的起伏情况;"先对齐、后反演"的具体计算方案极大地减小了浅部结构不确定性对反演结果的影响;同时,整体归一化策略充分利用了台阵的振幅信息,有效地加强了对深部结构的约束.反演结果显示,"410-km间断面"在北区抬升了10~20 km,在中区抬升了20~30 km,在南区抬升了60~70 km,与橄榄石-瓦兹利石平衡态相变界面的矿物物理学预测结果一致;其波速跃变在北区为10%,在中区为10%,在南区为7%.扣除了前人在层析成像显示的地震源区及目标区速度异常的影响后,约4%的波速跃变可能由橄榄石-瓦兹利石的相变所产生,与IASP91模型的速度跃变值相当.目前的研究结果表明俯冲带内部似乎不存在大量的亚稳态橄榄石.基于更多资料并对波形细节进行拟合,可望刻画俯冲板块内部410-km间断面的精细结构,给出关于这一问题的确定性回答. 相似文献
18.
自然电场法常用于环境与工程等领域的监测作业,但各时刻观测数据往往单独反演解释.为了充分利用时序数据间的关联信息,提高监测数据的反演解释可靠性,提出基于卡尔曼滤波的自然电场监测数据时序反演方法.根据达西定律和阿尔奇公式建立污染物在孔隙介质中的运动扩散的动态地电模型,作为用于构建卡尔曼滤波的状态模型.而卡尔曼滤波的观测模型则通过常规的自然电场法正演获得.在建立状态模型和观测模型的基础上,构建起卡尔曼滤波递归,将地电模型演化信息与自然电场观测数据进行信息融合,实现自然电场监测数据的时序反演.加入噪声的自然电场模拟数据测试表明时序反演算法具有较好的鲁棒性,对噪声不敏感.沙槽物理实验监测数据的计算测试也同样证明时序反演能有效处理监测数据,实现对动态模型的准确重构. 相似文献
20.
利用地震初至波走时信息建立近地表模型是地震勘探的关键步骤.由于近地表模型普遍呈现各向异性特征, 常规的各向同性近地表建模无法满足地震数据近地表校正和地下成像的需要, 因此, 发展各向异性介质的初至波走时多参数反演方法具有重要的理论意义和实际应用价值.本文基于Fomel群速(慢)度近似公式, 推导得到了声波VTI介质中16种参数化模式的走时多参数反演敏感核的解析解, 并详细分析了4种参数化模式下多参数敏感核随角度的变化特征.通过分析多参数的敏感核和多参数之间的耦合效应, 提出了在全方位和地表两种观测方式下最优的参数化方式和有效的多参数反演策略, 并通过理论分析和模型试验, 证明了所提出的反演策略的合理性和正确性. 相似文献
|