首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using smoothed particle hydrodynamics, we numerically simulate steady-state accretion discs for cataclysmic variable dwarf novae systems that have a secondary-to-primary mass ratio  0.35 ≤ q ≤ 0.55  . After these accretion discs have come to quasi-equilibrium, we rotate each disc out of the orbital plane by  δ= (1, 2, 3, 4, 5 or 20)°  to induce negative superhumps. For accretion discs tilted  5°  , we generate light curves and associated Fourier transforms for an atlas on negative superhumps and retrograde precession. Our simulation results suggest that accretion discs need to be tilted more than 3° for negative superhumps to be statistically significant. We also show that if the disc is tilted enough such that the gas stream strikes a disc face, then a dense cooling ring is generated near the radius of impact.
In addition to the atlas, we study these artificially tilted accretion discs to find the source to negative superhumps. Our results suggest that the source is additional light from innermost disc annuli, and this additional light waxes and wanes with the amount of gas stream overflow received as the secondary orbits. The nodes, where the gas stream transitions from flowing over to under the disc rim (and vice versa), precess in the retrograde direction.  相似文献   

2.
We investigate the role of the eccentric disc resonance in systems with mass ratios q ≳1/4, and demonstrate the effects that changes in the mass flux from the secondary star have upon the disc radius and structure. The addition of material with low specific angular momentum to the outer edge of a disc restricts that disc radially. Should the mass flux from the secondary be reduced, it is possible for the disc in a system with mass ratio as large as 1/3 to expand to the 3:1 eccentric inner Lindblad resonance and for superhumps to be excited.  相似文献   

3.
4.
5.
We use the grid of hydrodynamic accretion disc calculations of Stehle to construct orbital phase‐dependent emission‐line profiles of thin discs carrying spiral density waves. The observational signatures of spiral waves are explored to establish the feasibility of detecting spiral waves in cataclysmic variable discs using prominent emission lines in the visible range of the spectrum. For high Mach number accretion discs ( M v φ c s≃ 15 – 30), we find that the spiral shock arms are so tightly wound that they leave few obvious fingerprints in the emission lines. Only a minor variation of the double peak separation in the line profile at a level of ∼8 per cent is produced. For accretion discs in outburst ( M ≃ 5 – 20) however, the lines are dominated by the emission from an m =2 spiral pattern in the disc. We show that reliable Doppler tomograms of spiral shock patterns can be reconstructed provided that a signal‐to‐noise ratio of at least 15, a wavelength resolution of ∼80 km s−1 and a time resolution of ∼50 spectra per binary orbit are achieved. We confirm that the observed spiral pattern in the disc of IP Pegasi can be reproduced by tidal density waves in the accretion disc and demands the presence of a large, hot disc, at least in the early outburst stages.  相似文献   

6.
7.
We numerically study the tidal instability of accretion discs in close binary systems using a two-dimensional SPH code. We find that the precession rate of tidally unstable, eccentric discs does not only depend upon the binary mass ratio q . Although the (prograde) disc precession rate increases with the strength of the tidal potential, we find that increasing the shear viscosity ν also has a significant prograde effect. Increasing the disc temperature has a retrograde impact upon the precession rate.   We find that motion relative to the binary potential results in superhump-like, periodic luminosity variations in the outer reaches of an eccentric disc. The nature and location of the luminosity modulation are functions of ν. Light curves most similar to observations are obtained for ν values appropriate for a dwarf nova in outburst.   We investigate the thermal–tidal instability model for superoutburst. A dwarf nova outburst is simulated by instantaneously increasing ν, which causes a rapid radial expansion of the disc. Should the disc encounter the 3: 1 eccentric inner Lindblad resonance and become tidally unstable, then tidal torques become much more efficient at removing angular momentum from the disc. The disc then shrinks and M d increases. The resulting increase in disc luminosity is found to be consistent with the excess luminosity of a superoutburst.  相似文献   

8.
9.
10.
11.
12.
13.
Mass loss appears to be a common phenomenon among astrophysical accretion disc systems. An outflow emanating from an accretion disc can act as a sink for mass, angular momentum and energy, and can therefore alter the dissipation rates and effective temperatures across the disc. Here, the radial distributions of dissipation rate and effective temperature across a Keplerian, steady-state, mass-losing accretion disc are derived, using a simple, parametric approach that is sufficiently general to be applicable to many types of dynamical disc–wind models.
Effective temperature distributions for mass-losing accretion discs in cataclysmic variables are shown explicitly, with parameters chosen to describe both radiation-driven and centrifugally driven outflows. For realistic wind mass-loss rates of a few per cent, only centrifugally driven outflows – particularly those in which mass loss is concentrated in the inner disc – are likely to alter the effective temperature distribution of the disc significantly. Accretion discs that drive such outflows could produce spectra and eclipse light curves that are noticeably different from those produced by standard, conservative discs.  相似文献   

14.
We extend recent work that included the effect of pressure forces to derive the precession rate of eccentric accretion discs in cataclysmic variables to the case of double degenerate systems. We find that the logical scaling of the pressure force in such systems results in predictions of unrealistically high primary masses. Using the prototype AM CVn as a calibrator for the magnitude of the effect, we find that there is no scaling that applies consistently to all the systems in the class. We discuss the reasons for the lack of a superhump period to mass ratio relationship analogous to that known for SU UMa systems and suggest that this is because these secondaries do not have a single valued mass–radius relationship. We highlight the unreliability of mass ratios derived by applying the SU UMa expression to the AM CVn binaries.  相似文献   

15.
We present K -band spectra of the short-period dwarf novae YZ Cnc, LY Hya, BK Lyn, T Leo, SW UMa and WZ Sge, the nova-like variables DW UMa, V1315 Aql, RW Tri, VY Scl, UU Aqr and GP Com, and a series of field dwarf stars with spectral types ranging from K2 to M6.
The spectra of the dwarf novae are dominated by emission lines of H  i and He  i . The large velocity and equivalent widths of these lines, in conjunction with the fact that the lines are double-peaked in the highest inclination systems, indicate an accretion disc origin. In the case of YZ Cnc and T Leo, for which we obtained time-resolved data covering a complete orbital cycle, the emission lines show modulations in their equivalent widths that are most probably associated with the bright spot (the region where the gas stream collides with the accretion disc). There are no clear detections of the secondary star in any of the dwarf novae below the period gap, yielding upper limits of 10–30 per cent for the contribution of the secondary star to the observed K -band flux. In conjunction with the K -band magnitudes of the dwarf novae, we use the derived secondary star contributions to calculate lower limits to the distances to these systems.
The spectra of the nova-like variables are dominated by broad, single-peaked emission lines of H  i and He  i – even the eclipsing systems we observed do not show the double-peaked profiles predicted by standard accretion disc theory. With the exception of RW Tri, which exhibits Na  i , Ca  i and 12CO absorption features consistent with a M0V secondary contributing 65 per cent of the observed K -band flux, we find no evidence for the secondary star in any of the nova-like variables. The implications of this result are discussed.  相似文献   

16.
Negative superhumps in cataclysmic variable systems result when the accretion disc is tilted with respect to the orbital plane. The line of nodes of the tilted disc precesses slowly in the retrograde direction, resulting in a photometric signal with a period slightly less than the orbital period. We use the method of smoothed particle hydrodynamics to simulate a series of models of differing mass ratio and effective viscosity to determine the retrograde precession period and superhump period deficit  ɛ  as a function of system mass ratio q . We tabulate our results and present fits to both  ɛ  and  ɛ+  versus q , as well as compare the numerical results with those compiled from the literature of negative superhump observations. One surprising result is that while we find negative superhumps most clearly in simulations with an accretion stream present, we also find evidence for negative superhumps in simulations in which we shut off the mass transfer stream completely, indicating that the origin of the photometric signal is more complicated than previously believed.  相似文献   

17.
18.
We study numerically the interaction of the infalling gas stream and the rim of the accretion disc in cataclysmic variables. The simulations were performed with a smoothed particle hydrodynamics scheme with high spatial resolution. Parameters of the systems AM CVn, OY Car, DQ Her, U Gem and IP Peg were used for the simulations. The simulations cover a wide range of orbital periods, mass ratios and mass transfer rates, as well as different thermal states of the accretion disc. The main result of this study is that the accretion stream is not stopped at the impact region (the bright spot at the outer rim of the disc). In fact, after undergoing the shock interaction, most of the matter is deflected vertically and flows in a more or less diffuse stream to inner parts of the disc, hitting the disc surface close to the circularization radius at orbital phase 0.5. This is a common feature in all systems for all simulated parameters. This stream overflow can cause the X-ray absorption dips observed in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) around orbital phase 0.7, if the inclination is at least 65°. Under certain circumstances, namely a sudden increase of the mass transfer rate from the secondary or a rather small disc, parts of the overflowing stream bounce off the disc surface after hitting it at orbital phase ≈0.5. Another absorption region can be expected around orbital phase 0.2.
In our simulations most of the infalling matter reaches the inner disc very quickly. This must alter the evolution of the quiescent disc and the outburst behaviour considerably compared with purely viscous transport of the material through the disc from the outer rim, and therefore should be taken into account in dwarf nova outburst cycle calculations. To our knowledge, the consequences of such a massive stream overflow for the dwarf nova outburst cycle have not been considered yet.  相似文献   

19.
Blue- and redshifted hydrogen and helium satellite recombination lines have recently been discovered in the optical spectra of at least two supersoft X-ray sources (SSSs), RX J0513−069 and RX J0019.8+2156, and, tentatively, also in one short-period cataclysmic variable star (CV), the recurrent nova T Pyx. These features are thought to provide evidence for the presence of highly collimated jets in these systems. No similar spectral signatures have been detected in the spectra of other short-period CVs, despite a wealth of existing optical data on these systems. Here, we ask if this apparent absence of 'jet lines' in the spectra of most CVs already implies the absence of jets of the kind that appear to be present in the SSSs and perhaps T Pyx, or whether the current lack of jet detection in CVs can still be ascribed to observational difficulties.
To answer this question, we derive a simple, approximate scaling relation between the expected equivalent widths (EWs) of the observed jet lines in both types of systems and the accretion rate through the disc, EW(line)∝˙M4/3acc. We use this relation to predict the strength of jet lines in the spectra of 'ordinary' CVs, i.e. systems characterized by somewhat lower accretion rates than T Pyx. Making the assumption that the features seen in T Pyx are indeed jet lines, and using this system as a reference point, we find that, if jets are present in many CVs, they may be expected to produce optical satellite recombination lines with EWs of a few hundredths to a few tenths of an angstrom in suitably selected systems. A similar prediction is obtained if the SSS RX J0513−069 is used as a reference point. Such EWs are small enough to account for the non-detection of jet features in CVs to date, but large enough to allow them to be detected in data of sufficiently high quality, if they exist.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号