首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cenozoic, post-collisional, potassic and ultrapotassic igneousrocks in the North Qiangtang, Songpan–Ganzi and NorthKunlun terranes of the northern Tibetan Plateau are distributedalong a semi-continuous, east–west-trending, volcanicbelt, which is over 1200 km in length. Spatially, there is aclose association with major strike-slip faults, thrust faultsand pull-apart basins. The ages of these magmatic rocks rangefrom 45 Ma to the present (the youngest known eruption occurredin 1951); they are shoshonitic, compositionally similar to K-richsubduction-related magmas, and range in SiO2 from 44 to 66 wt%. There is a relative enrichment of large ion lithophile elements(LILE) and light rare earth elements (LREE) in the most primitivemagmatic rocks (MgO >6 wt %) in the North Qiangtang terranecompared with those in the Songpan–Ganzi and North Kunlunterranes; correspondingly, the primitive magmas have higher87Sr/86Sr and 206Pb/204Pb, and lower 143Nd/144Nd ratios in theNorth Qiangtang terrane than in the Songpan–Ganzi andNorth Kunlun terranes. The dominant factors that control thegeochemical characteristics of the magmas are an enriched asthenosphericmantle source composition, the degree of partial melting ofthis source, and the combined processes of crustal assimilationand fractional crystallization (AFC). Enrichment of the asthenosphereis considered to have occurred by incorporation of subductedsediments into the mantle wedge above a subducted slab of Indianlithosphere during India–Asia convergence. Continentallithospheric mantle, metasomatically enriched during earlierepisodes of subduction, may have also contributed a source componentto the magmas. Trace element modelling indicates that the mantlesource of the most primitive magmas in the North Qiangtang terranecontained higher amounts of subducted sediment (0·5–10%)compared with those in the Songpan–Ganzi and North Kunlunterranes (<2%). The degrees of partial melting required togenerate the primitive potassic and ultrapotassic magmas fromthe enriched mantle sources range from <0·1% to 15%in the three major basement terranes. Energy-constrained AFCmodel calculations show that the more evolved magmatic rocks(MgO <6 wt %) are the results of AFC processes in the middlecrust in the North Qiangtang terrane and the upper crust inthe Songpan–Ganzi and North Kunlun terranes. We proposethat the ultimate driving force for the generation of the post-collisionalpotassium-rich magmatism in north Tibet is the continuous northwardunderthrusting of the Indian continental lithosphere followingIndia–Asia collision. This underthrusting resulted inupwelling of hot asthenosphere beneath north Tibet, squeezedup between the advancing Indian lithosphere and the backstopof the rigid Asian continental lithosphere. Asthenospheric upwellingmay have also contributed to uplift of the northern TibetanPlateau. KEY WORDS: Tibetan Plateau; potassic and ultrapotassic magmatism; enriched asthenospheric mantle source; EC-AFC modelling; geodynamics  相似文献   

2.
Neogene potassic lavas in northern and southern Tibet have differentisotopic (  相似文献   

3.
Post-collisional magmatism in the southern Iberian and northwesternAfrican continental margins contains important clues for theunderstanding of a possible causal connection between movementsin the Earth's upper mantle, the uplift of continental lithosphereand the origin of circum-Mediterranean igneous activity. Systematicgeochemical and geochronological studies (major and trace element,Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-agedating) on igneous rocks provide constraints for understandingthe post-collisional history of the southern Iberian and northwesternAfrican continental margins. Two groups of magmatic rocks canbe distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8Ma), Si–K-rich group including high-K (calc-alkaline)and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene(6·3–0·65 Ma), Si-poor, Na-rich group includingbasanites and alkali basalts to hawaiites and tephrites. Maficsamples from the Si–K-rich group generally show geochemicalaffinities with volcanic rocks from active subduction zones(e.g. Izu–Bonin and Aeolian island arcs), whereas maficsamples from the Si-poor, Na-rich group are geochemically similarto lavas found in intraplate volcanic settings derived fromsub-lithospheric mantle sources (e.g. Canary Islands). The transitionfrom Si-rich (subduction-related) to Si-poor (intraplate-type)magmatism between 6·3 Ma (first alkali basalt) and 4·8Ma (latest shoshonite) can be observed both on a regional scaleand in individual volcanic systems. Si–K-rich and Si-poorigneous rocks from the continental margins of southern Iberiaand northwestern Africa are, respectively, proposed to havebeen derived from metasomatized subcontinental lithosphere andsub-lithospheric mantle that was contaminated with plume material.A three-dimensional geodynamic model for the westernmost Mediterraneanis presented in which subduction of oceanic lithosphere is inferredto have caused continental-edge delamination of subcontinentallithosphere associated with upwelling of plume-contaminatedsub-lithospheric mantle and lithospheric uplift. This processmay operate worldwide in areas where subduction-related andintraplate-type magmatism are spatially and temporally associated. KEY WORDS: post-collisional magmatism; Mediterranean-style back-arc basins; subduction; delamination; uplift of marine gateways  相似文献   

4.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

5.
Potassic volcanism in the western Sichuan and Yunnan Provinces,SE Tibet, forms part of an extensive magmatic province in theeastern Indo-Asian collision zone during the Paleogene (40–24Ma). The dominant rock types are phlogopite-, clinopyroxene-and olivine-phyric calc-alkaline (shoshonitic) lamprophyres.They are relatively depleted in Na2O, Fe2O3, and Al2O3 comparedwith the late Permian–early Triassic Emeishan continentalflood basalts in the western part of the Yangtze craton, andhave very high and variable abundances of incompatible traceelements. Primitive mantle-normalized incompatible element patternshave marked negative Nb, Ta and Ti anomalies similar to thoseof K-rich subduction-related magmas, although the geodynamicsetting is clearly post-collisional. Spatially, some incompatibletrace element abundances, together with inferred depths of meltsegregation based on the Mg-15 normalized compositions of thesamples, display progressive zonation trends from SW to NE withincreasing distance from the western boundary of the Yangtzecraton. Systematic variations in major and trace element abundancesand Sr–Nd–Pb isotope compositions appear to havepetrogenetic significance. The systematic increases in incompatibletrace element abundances from the western margin to the interiorof the Yangtze craton can be explained by progressively decreasingextents of partial melting, whereas steady changes in some incompatibletrace element ratios can be attributed to changes in the amountof subduction-derived fluid added to the lithospheric mantleof the Yangtze craton. The mantle source region of the lamprophyresis considered to be a relatively refractory phlogopite-bearingspinel peridotite, heterogeneously enriched by fluids derivedfrom earlier phases of late Proterozoic and Palaeozoic subductionbeneath the western part of the Yangtze craton. Calculationsbased on a non-modal batch melting model show that the degreeof partial melting ranges from 0·6% to 15% and the proportionof subduction-derived fluid added from0·1% to 0·7%(higher-Ba fluid) or from 5% to 25% (lower-Ba fluid) from theinterior to the western margin of the Yangtze craton. Some pre-existinglithospheric faults might have been reactivated in the areaneighbouring the Ailao Shan–Red River (ASRR) strike-slipbelt, accompanying collision-induced extrusion of the Indo-Chinablock and left-lateral strike-slip along the ASRR shear zone.This, in turn, could have triggered decompression melting ofthe previously enriched mantle lithosphere, resulting in calc-alkalinelamprophyric magmatism in the western part of the Yangtze craton. KEY WORDS: Tibet; potassic magmatism; lithospheric mantle; metasomatism  相似文献   

6.
PLANK  T. 《Journal of Petrology》2005,46(5):921-944
Arc magmas and the continental crust share many chemical features,but a major question remains as to whether these features arecreated by subduction or are recycled from subducting sediment.This question is explored here using Th/La, which is low inoceanic basalts (<0·2), elevated in the continents(>0·25) and varies in arc basalts and marine sediments(0·09–0·34). Volcanic arcs form linear mixingarrays between mantle and sediment in plots of Th/La vs Sm/La.The mantle end-member for different arcs varies between highlydepleted and enriched compositions. The sedimentary end-memberis typically the same as local trench sediment. Thus, arc magmasinherit their Th/La from subducting sediment and high Th/Lais not newly created during subduction (or by intraplate, adakiteor Archaean magmatism). Instead, there is a large fractionationin Th/La within the continental crust, caused by the preferentialpartitioning of La over Th in mafic and accessory minerals.These observations suggest a mechanism of ‘fractionation& foundering’, whereby continents differentiate intoa granitic upper crust and restite-cumulate lower crust, whichperiodically founders into the mantle. The bulk continentalcrust can reach its current elevated Th/La if arc crust differentiatesand loses 25–60% of its mafic residues to foundering. KEY WORDS: arc magmatism; continental crust; delamination; thorium; sediment subduction  相似文献   

7.
Whole-rock geochemical data on basaltic to rhyolitic samplesfrom 12 volcanic centers are used to constrain the role of continentalcrust in the genesis of magmas formed beneath the anomalouslywide subduction-related volcanic arc in Ecuador. Relativelyhomogeneous, mantle-like, isotopic compositions across the arcimply that the parental magmas in Ecuador were produced largelywithin the mantle wedge above the subduction zone and not byextensive melting of crustal rocks similar to those upon whichthe volcanoes were built. Cross-arc changes in 143Nd/144Nd and7/4Pb are interpreted to result from assimilation of geochemicallymature continental crust, especially in the main arc area, 330–360km from the trench. Mixing calculations limit the quantity ofassimilated crust to less than 10%. Most andesites and dacitesin Ecuador have adakite-like trace element characteristics (e.g.Y <18 ppm, Yb <2 ppm, La/Yb >20, Sr/Y >40). Availablewhole-rock data do not provide a clear basis for distinguishingbetween slab-melting and deep crustal fractionation models forthe genesis of Ecuador adakites; published data highlightinggeochemical evolution within individual volcanoes, and in magmaticrocks produced throughout Ecuador since the Eocene, appear tosupport the deep fractionation model for the genesis of mostevolved Ecuadoran lavas. A subset of andesites, which displaya combination of high Sr (>900 ppm), Nd >4·1 and7/4Pb <6·0, appear to be the best candidates amongEcuador lavas for slab-melts associated with the subductionof the relatively young, over-thickened, oceanic crust of theCarnegie Ridge. KEY WORDS: andesite; Ecuador; trace elements; isotopes; adakite  相似文献   

8.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   

9.
This study reports oxygen isotope ratios determined by laserfluorination of mineral separates (mainly plagioclase) frombasaltic andesitic to rhyolitic composition volcanic rocks eruptedfrom the Lassen Volcanic Center (LVC), northern California.Plagioclase separates from nearly all rocks have 18O values(6·1–8·4) higher than expected for productionof the magmas by partial melting of little evolved basalticlavas erupted in the arc front and back-arc regions of the southernmostCascades during the late Cenozoic. Most LVC magmas must thereforecontain high 18O crustal material. In this regard, the 18O valuesof the volcanic rocks show strong spatial patterns, particularlyfor young rhyodacitic rocks that best represent unmodified partialmelts of the continental crust. Rhyodacitic magmas erupted fromvents located within 3·5 km of the inferred center ofthe LVC have consistently lower 18O values (average 6·3± 0·1) at given SiO2 contents relative to rockserupted from distal vents (>7·0 km; average 7·1± 0.1). Further, magmas erupted from vents situated attransitional distances have intermediate values and span a largerrange (average 6·8 ± 0·2). Basaltic andesiticto andesitic composition rocks show similar spatial variations,although as a group the 18O values of these rocks are more variableand extend to higher values than the rhyodacitic rocks. Thesefeatures are interpreted to reflect assimilation of heterogeneouslower continental crust by mafic magmas, followed by mixingor mingling with silicic magmas formed by partial melting ofinitially high 18O continental crust (9·0) increasinglyhybridized by lower 18O (6·0) mantle-derived basalticmagmas toward the center of the system. Mixing calculationsusing estimated endmember source 18O values imply that LVC magmascontain on a molar oxygen basis approximately 42 to 4% isotopicallyheavy continental crust, with proportions declining in a broadlyregular fashion toward the center of the LVC. Conversely, the18O values of the rhyodacitic rocks suggest that the continentalcrust in the melt generation zones beneath the LVC has beensubstantially modified by intrusion of mantle-derived basalticmagmas, with the degree of hybridization ranging on a molaroxygen basis from approximately 60% at distances up to 12 kmfrom the center of the system to 97% directly beneath the focusregion. These results demonstrate on a relatively small scalethe strong influence that intrusion of mantle-derived maficmagmas can have on modifying the composition of pre-existingcontinental crust in regions of melt production. Given thisresult, similar, but larger-scale, regional trends in magmacompositions may reflect an analogous but more extensive processwherein the continental crust becomes progressively hybridizedbeneath frontal arc localities as a result of protracted intrusionof subduction-related basaltic magmas. KEY WORDS: oxygen isotopes; phenocrysts; continental arc magmatism; Cascades; Lassen  相似文献   

10.
Establishing the petrogenesis of volcanic and plutonic rocksis a key issue in unraveling the evolution of distinct subduction-relatedtectonic phases occurring along the South American margin. Thisis particularly true for Cenozoic times when large volumes ofmagma were produced in the Andean belt. In this study we havefocused on Oligo-Miocene magmatism in central Chile at 33°S.Our data include field and petrographic observations, whole-rockmajor and trace element analyses, U–Pb zircon dating,and Pb, Sr, and Hf isotope analyses of plagioclase, clinopyroxene,and zircon mineral separates. Combined with earlier dating resultsthe new zircon ages define a 28·8–5·2 Maperiod of plutonic and volcanic activity that ceased as a consequenceof flattening subduction of the Nazca–Farallon plate.Rare earth elements patterns are variable, with up to 92 timeschondrite concentrations for light rare earth elements yielding(La/Yb)N between 3·6 and 7·0, and an absence ofEu anomalies. Initial Pb isotope signatures are in the rangeof 18·358–19·023 for 206Pb/ 204Pb, 15·567–15·700for 207Pb/ 204Pb and 38·249–39·084 for 208Pb/204Pb. Initial 87Sr/ 86Sr are mostly in the range of 0·70369–0·70505,with two more radiogenic values at 0·7066. Initial Hfisotopic compositions of zircons yield exclusively positiveHfi ranging between + 6·9 and + 9·6. The newlydetermined initial isotope characteristics of the Oligo-Miocenemagmas suggest that the mantle source lithologies are differentfrom both those of Pacific mid-ocean ridge basalt and oceanisland basalt, plotting in the field of reference values forsubcontinental lithospheric mantle, characterized by moderatelarge ion lithophile element–high field strengh elementdepletion and high 238U/ 204Pb. A Hf model age of 2 Ga is estimatedfor the formation of the subcontinental mantle–continentalcrust assemblage in the region, suggesting that the initialSr and Pb isotope ratios inferred for the source of the Oligo-Mioceneparental magmas are the result of later Rb and U enrichmentcaused by mantle metasomatism. A time-integrated model Rb/Srof 0·039 and µ 16 are estimated for the sourceof the parental magmas, consistent with ratios measured in peridotitexenoliths from continental areas. Evolution from predominant(>90%) basaltic–gabbroic to andesitic–dioriticmagmas seems to involve a combination of (1) original traceelement differences in the metasomatized subcontinental mantle,(2) different degrees of partial melting and (3) fractionalcrystallization in the garnet- and spinel-peridotite stabilityfields. The genesis of more differentiated magmas reaching rhyolitic–graniticcompositions most probably also includes additional crystalfractionation at both shallow mantle depths and within the crust,possibly leading to some very minor assimilation of crustalmaterial. KEY WORDS: calc-alkaline magmatism; Oligo-Miocene; U–Pb dating; Sr–Pb–Hf isotopes; central Chile  相似文献   

11.
Baguio, in the Central Cordillera of Northern Luzon, is a district that displays porphyry copper and epithermal gold mineralization, associated with Early Miocene–Pliocene–Quaternary calc‐alkaline and adakitic intrusions. Systematic sampling, K‐Ar dating, major and trace elements, and Sr, Nd, Pb isotopic analyses of fresh magmatic rocks indicate three magmatic pulses: an Early Miocene phase (21.2–18.7 Ma), a Middle–Late Miocene phase (15.3–8 Ma) and finally a Pliocene–Quaternary event (3–1 Ma). The first phase emplaced evolved calc‐alkaline magmas, essentially within the Agno Batholith complex, and is thought to be related to the westward‐dipping subduction of the West Philippine Basin. After a quiescence period during which the Kennon limestone was deposited, magmatic activity resumed at 15.3 Ma, in connection with the start of the subduction of the South China Sea along the Manila Trench. It emplaced first petrogenetically related and relatively unradiogenic low‐K calc‐alkaline lavas and intermediate adakites. Temporal geochemical patterns observed from 15.3 to 1 Ma include progressive enrichment in K and other large ion lithophile elements, increase in radiogenic Sr and Pb and corresponding decrease in radiogenic Nd. These features are thought to reflect the progressive addition to the Luzon arc mantle wedge of incompatible elements largely inherited from South China Sea sediments. The origin of the long quiescence period, from 8 to 3 Ma, remains problematic. It might represent a local consequence of the docking of the Zambales ophiolitic terrane to Northern Luzon. Then, magmatic activity resumed at 3 Ma, emplacing chemically diversified rocks ranging from low K to high K and including a large proportion of adakites, especially during the Quaternary (dacitic plugs). The authors tentatively relate this diversity to the development of a slab tear linked with the subduction of the fossil South China Sea ridge beneath the Baguio area.  相似文献   

12.
The evolution of the late Archean Belingwe greenstone belt,Zimbabwe, is discussed in relation to the geochemistry of theultramafic to mafic volcanic rocks. Four volcanic types (komatiite,komatiitic basalt, D-basalt and E-basalt) are distinguishedin the 2·7 Ga Ngezi volcanic sequence using a combinationof petrography and geochemistry. The komatiites and D-basaltsare rocks in which isotopic systems and trace elements are depleted.Chemical variations in komatiites and D-basalts can be explainedby fractional crystallization from the parental komatiite. Incontrast, komatiitic basalts and E-basalts are siliceous anddisplay enriched isotopic and trace element compositions. Theirchemical trends are best explained by assimilation with fractionalcrystallization (AFC) from the primary komatiite. AFC calculationsindicate that the komatiitic basalts and E-basalts are derivedfrom komatiites contaminated with 20% and 30% crustal material,respectively. The volcanic stratigraphy of the Ngezi sequence,which is based on field relationships and the trace elementcompositions of relict clinopyroxenes, shows that the leastcontaminated komatiite lies between highly contaminated komatiiticbasalt flows, and has limited exposure near the base of thesuccession. Above these flows, D- and E-basalts alternate. Thekomatiite appears to have erupted on the surface only in theearly stages, when plume activity was high. As activity decreasedwith time, komatiite magmas may have stagnated to form magmachambers within the continental crust. Subsequent komatiiticmagmas underwent fractional crystallization and were contaminatedwith crust to form D-basalts or E-basalts. KEY WORDS: komatiite; crustal assimilation; Belingwe greenstone belt; continental flood basalt; plume magmatism  相似文献   

13.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

14.
The anhydrous phase relations of an uncontaminated (primitive),ferropicrite lava from the base of the Early Cretaceous Paraná–Etendekacontinental flood basalt province have been determined between1 atm and 7 GPa. The sample has high contents of MgO (14·9wt %), FeO* (14·9 wt %) and Ni (660 ppm). Olivine phenocrystshave maximum Fo contents of 85 and are in equilibrium with thebulk rock, assuming a of 0·32. A comparison of our results with previous experimental studiesof high-Mg rocks shows that the high FeO content of the ferropicritecauses an expansion of the liquidus crystallization field ofgarnet and clinopyroxene relative to olivine; orthopyroxenewas not observed in any of our experiments. The high FeO contentalso decreases solidus temperatures. Phase relations indicatethat the ferropicrite melt last equilibrated either at 2·2GPa with an olivine–clinopyroxene residue, or at 5 GPawith a garnet–clinopyroxene residue. The low bulk-rockAl2O3 content (9 wt %) and high [Gd/Yb]n ratio (3·1)are consistent with the presence of residual garnet in the ferropicritemelt source and favour high-pressure melting of a garnet pyroxenitesource. The garnet pyroxenite may represent subducted oceaniclithosphere entrained by the upwelling Tristan starting mantleplume head. During adiabatic decompression, intersection ofthe garnet pyroxenite solidus at 5 GPa would occur at a mantlepotential temperature of 1550°C and yield a ferropicriteprimary magma. Subsequent melting of the surrounding peridotiteat 4·5 GPa may be restricted by the thickness of theoverlying sub-continental lithosphere, such that dilution ofthe garnet pyroxenite melt component would be significantlyless than in intra-oceanic plate settings (where the lithosphereis thinner). This model may explain the limited occurrence offerropicrites at the base of continental flood basalt sequencesand their apparent absence in ocean-island basalt successions. KEY WORDS: continental flood basalt; ferropicrite; mantle heterogeneity; mantle melting; phase relations; pyroxenite  相似文献   

15.
Mayon is the most active volcano along the east margin of southernLuzon, Philippines. Petrographic and major element data indicatethat Mayon has produced a basaltic to andesitic lava seriesby fractional crystallization and magma mixing. Trace elementdata indicate that the parental basalts came from a heterogeneousmantle source. The unmodified composition of the mantle wedgeis similar to that beneath the Indian Ocean. To this mantlewas added a subduction component consisting of melt from subductedpelagic sediment and aqueous fluid dehydrated from the subductedbasaltic crust. Lavas from the highly active Taal Volcano onthe west margin of southern Luzon are compositionally more variablethan Mayon lavas. Taal lavas also originated from a mantle wedgemetasomatized by aqueous fluid dehydrated from the subductedbasaltic crust and melt plus fluid derived from the subductedterrigenous sediment. More sediment is involved in the generationof Taal lavas. Lead isotopes argue against crustal contamination.Some heterogeneity of the unmodified mantle wedge and differencesin whether the sediment signature is transferred into the lavasource through an aqueous fluid or melt phase are needed toexplain the regional compositional variation of Philippine arclavas. KEY WORDS: Mayon Volcano; Philippines; sediment melt; subduction component; Taal Volcano  相似文献   

16.
We present new U-series isotope, 87Sr/ 86Sr, 143Nd/ 144Nd andtrace element data for a set of mafic, K-rich rocks from volcanoesin Central–Southern Italy. These shoshonitic to ultrapotassiclavas display strongly depleted high field strength element(HSFE) abundances with respect to other incompatible trace elementstogether with high but variable 87Sr/ 86Sr and low but variable143Nd/ 144Nd values. Such characteristics are thought to bedue to addition of subducted crust of variable amount and compositionto their mantle sources prior to magma genesis. Rocks from thenorthernmost region (i.e. Tuscan Magmatic Province and NorthernRoman Magmatic Province) display (230Th/ 238U) activity ratiosclose to radioactive equilibrium, suggesting that metasomatismof their sources occurred before 400 ka and recent melting tookplace at shallow depths, in the absence of garnet. A 238U excessof up to 27% has been measured in rocks from the NeapolitanDistrict. The occurrence of significant U excesses is a featureof arc magmas, but is typically seen in depleted lavas ratherthan in highly enriched rocks such as these (20 ppm Th). Thissignature requires a recent addition of a U-rich component tothe already strongly enriched mantle wedge beneath this regionof Italy. We suggest that a supercritical liquid, from deeplysubducted carbonate-rich sediments of the still-active Ionianslab, is responsible for generating a high-U, low-Th component,which produces the observed disequilibria. A 30% 230Th excessmeasured in a single unaltered sample from the Lucanian MagmaticProvince, along with a less marked negative HFSE anomaly, suggeststhe contribution of a deeper, garnet-bearing component in thegenesis of these magmas, plausibly related to the upwellingof asthenospheric mantle around the corner of the Ionian slab. KEY WORDS: U/Th disequilibria; potassic and ultrapotassic rocks; subduction: metasomatism; mantle melting; Central and Southern Italy  相似文献   

17.
The Taiwan mountain belt, one of the youngest orogenies in the world, is caused by the collision of the Luzon arc with the Eurasian margin, which leads to post-collisional extension and magmatism in the Northern Taiwan Volcanic Zone (NTVZ). The magma chamber process in this region has not previously been elucidated in detail. In this paper, the textural and compositional features of plagioclase phenocrysts in basalt from the Tatun Volcanic Group (TTVG) were studied to restrict the dynamics of magma system. Results show that the magma melts in TTVG are mainly sourced from the underlying MORB-like mantle wedge but influenced by incorporation of subduction components, causing the elevated Sr/Y and Ba/Y ratios in magma melts. The subduction components are mainly transported in the form of sediment melt. The plagioclase phenocrysts in the TTVG volcanic rocks are generally coarsely core-sieved with a clear rim. The An contents in the rims of plagioclase are much lower than those of cores, and elevated FeO concentrations are detected in the plagioclase rims. We propose there exists a double-layer magma chamber in this region. The core of the plagioclase was crystalized in the deeper quiescent magma chamber (~21 km), which was subsequently partially dissolved during the ascent of magma melt under H2O-undersaturated condition, forming the typical coarsely sieved texture and synneusis. When this crystal-rich melt migrates into the shallower chamber, water saturation is reached and more sodic plagioclase formed as the rim of phenocryst. Due to the considerably higher fO2 in the shallow chamber than in the deeper one, and the distribution of Fe between plagioclase and melt positively correlates with fO2, the FeO content in the plagioclase rim elevates in conjunction with increasing fO2.  相似文献   

18.
A suite of pyroxenites from the Beni Bousera peridotite massif,northern Morocco, have been analysed for Re–Os and Lu–Hfisotopic compositions. Measured sections of the massif indicatethat pyroxenite layers make up between 1 and 9% by volume ofthe total outcrop. Clinopyroxenes from two Cr-diopside pyroxeniteshave unradiogenic Hf isotope compositions (  相似文献   

19.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

20.
Elemental, isotopic, and mineral compositions as well as rocktextures were examined in samples from Popocatépetl volcanoand immediately surrounding monogenetic scoria cones of theSierra Chichinautzin Volcanic Field, central Mexico. Magma generationis strongly linked to the active subduction regime to the south.Rocks range in composition from basalt to dacite, but Popocatépetlsamples are generally more evolved and have mineral compositionsand textures consistent with more complicated, multi-stage evolutionaryprocesses. High-Mg calc-alkaline and more alkaline primitivemagmas are present in the monogenetic cones. Systematic variationsin major and trace element compositions within the monogeneticsuite can mostly be explained by polybaric fractional crystallizationprocesses in small and short-lived magmatic systems. In contrast,Popocatépetl stratovolcano has produced homogeneous magmacompositions from a shallow, long-lived magma chamber that isperiodically replenished by primitive basaltic magmas. The currenteruption (1994–present) has produced silicic dome lavasand pumice clasts that display mingling of an evolved daciticcomponent with an olivine-bearing mafic component. The longevityof the magma chamber hosted in Cretaceous limestones has fosteredinteraction with these rocks as evidenced by the chemical andisotopic compositions of the different eruptive products, contact-metamorphosedxenoliths, and fumarolic gases. Popocatépetl volcanicproducts display a considerable range of 87Sr/86Sr (0·70397–0·70463)and Nd (+6·2 to +3·0) whereas Pb isotope ratiosare relatively homogeneous (206Pb/204Pb 18·61–18·70;207Pb/204Pb 15·56–15·60). KEY WORDS: Popocatépetl; Sierra Chichinautzin Volcanic Field; arc petrogenesis; radiogenic isotopes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号