首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss 223 middle atmosphere lidar temperature observations. The record was collected at Frascati (42°N-13°E), during the 41-month period January 1989-May 1992, corresponding to the maximum of solar cycle 22. The choice of this interval was aimed at minimizing the temperature variability induced by the 11-year solar cycle. The average climatology over the 41-month period and comparison with a reference atmosphere (CIRA86) are presented. Monthly temperature variability over the full period, during opposite quasi-biennial oscillation phases and on a short-term scale (0.5-4 h), is analyzed. Results indicate the 50-55-km region as less affected by variability caused by the natural phenomena considered in the analysis. Due to this minimum in natural noise characterizing the atmospheric temperature just above the stratopause, observations of that region are well suited to the detection of possible temperature trends induced by industrial activities.  相似文献   

2.
One of the longest temperature records available for the equatorial region is provided by Rocketsonde from Thumba (8°N, 77°E), India during the period 1971–1993. In recent times, these data sets are reanalyzed using the up-to-date regression models, which take care of several corrections and parameters, not accounted for in earlier analyses and hence affecting the conclusions. In this paper, annual mean solar response in this data set along with the seasonal solar coefficient is quantitatively estimated now with improved confidence. A negative solar response in the stratosphere (1–2 K/100 solar flux unit, sfu) and a positive response for the mesosphere (0.5–3 K/100 sfu) are found. The negative stratospheric solar response is in contrast to the solar coefficient reported for low latitudes by earlier workers for other stations.  相似文献   

3.
Observational studies on the semiannual oscillation in the tropical stratosphere and mesosphere are reviewed. Results of many statistics based on rocket and satellite observations reveal that the long-term behavior of the mean zonal wind exhibits two semiannual cycles which have their maximum amplitudes centered at the stratopause level and the mesopause level, each one being associated with the semiannual temperature variations predominating at levels about 10 km lower.Observational evidence obtained from recent studies of the dynamical properties of upper stratospheric waves strongly supports the theoretical consideration that the stratospheric semiannual oscillation is the manifestation of the wave-zonal flow interaction with alternating accelerations of the westerly flow by Kelvin waves and the easterly flow by planetary Rossby waves.Regarding the semiannual variation in the upper mesosphere, however, very little is known about the possible momentum source. Therefore, emphasis is placed on the need for further observations of the structure and behavior of the tropical middle atmosphere.  相似文献   

4.
The last 50 years have seen enormous advances in our knowledge and understanding of the stratosphere and mesosphere, which together comprise the middle atmosphere. Beginning from a phase of basic discovery, we have now reached the stage where most observed phenomena can be modelled from first principles with a reasonable degree of fidelity, and where there is an overall theoretical framework which can be tested against measurements and models. This review surveys a number of major surprises in middle atmosphere science over the past 50 years. A phenomenological and historical approach is adopted in each case, leading up to the current literature. Along the way, a common thread emerges: the central role of waves, of various types, in redistributing angular momentum within the atmosphere, and the global nature of the atmospheric response to such redistribution.  相似文献   

5.
This paper provides a review of our current understanding of the processes responsible for gravity wave saturation as well as the principal effects and variability of saturation in the lower and middle atmosphere. We discuss the theoretical and observational evidence for linear and nonlinear saturation processes and examine the consequences of saturation for wave amplitude limits, momentum and energy fluxes, the diffusion of heat and constituents, and the establishment of a near-universal vertical wavenumber spectrum. Recent studies of gravity wave variability are reviewed and are seen to provide insights into the significant causes of wave variability throughout the atmosphere.  相似文献   

6.
The various measurement techniques and general problems in remote orin situ optical measurement of atmospheric minor gases are described.  相似文献   

7.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

8.
During the past 1000 years, there had been sev-eral widespread climate events on the earth, such asthe ‘Medieval Warm Period’, the ‘Little Ice Age’ andthe recent warming from the later part of the nine-teenth century onward[1,2]. To better understand thedetails of climatic history on a regional scale, morehigh-resolution, millennia-length climate reconstruc-tions are needed by intensive, multiproxy investigationof ice cores, sediments of loess and lakes, corals andtree-rings. Since …  相似文献   

9.
Systematic measurements of the middle-atmosphere temperature by a RAYLEIGH LIDAR located at La Réunion Island (20.8°S–55.5°E) has led to a preliminary study of the tidal effects in the height range of 30–70 km. Two analysis methods able to estimate the mean nighttime evolution of the temperature have been compared. Method 1 consists in averaging the temperature deviations from the nightly mean over several successive nights of measurement for given local solar times (LST); method 2 consists in averaging the raw data over the period of observation for given LST and in deriving afterwards the mean nighttime evolution of the temperature profiles. Some consistent LST-related structures have been observed with both methods, though better results have been obtained with method 1. One possible explanation for the differences between the two methods is the use of a series of data ranging from 4 to 8 h/night, depending on the meteorological conditions. In contrast to method 2, method 1 allows to correct the mean temperature for a given night, when the measurement window is different from night to night. Method 1 has been applied to two time series recorded in October and November 1995. The results clearly show the presence of tidal components with a downward phase propagation, specifically a warmer early night and a colder midnight in the stratosphere and the lower mesosphere. This behaviour is consistent with other LIDAR measurements made at similar latitudes in the Northern Hemisphere. In addition, a close comparison with the Global-Scale Wave Model (GSWM) tidal model predictions has also pointed out some similarities. Yet, large discrepancies in magnitude are also observed: as already reported in previous studies, the amplitudes predicted by GSWM are more than two times smaller compared to the corresponding values observed with the LIDAR.  相似文献   

10.
An all-sky CCD imager designed to measure wave structure of the OH, O2b(0,1) and OI557.7 nm airglow emission layers in the mesosphere and lower thermosphere (MLT) region has been operated near the equatorial region at São João do Cariri (Cariri), Brazil, (7.5°S, 36.5°W). A large number of gravity wave was observed from September 2000 to September 2002 and among them 64 wave events were identified as mesospheric bores. The bore front shows a horizontal extension greater than 1000 km, and observed in the airglow layers as a complementary brilliance between the three emissions. At the first time mesospheric bore events were observed and analyzed in the equatorial region. Their predominant characteristics, occurrence, local time dependency, morphology and propagation direction will be presented and discussed.  相似文献   

11.
On the basis of calculations using the general circulation model of the middle and upper atmosphere, the relative role of sources of nonmigrating tides distributed in atmosphere has been investigated. It is shown that in winter, when planetary waves in stratosphere are well developed, the main contribution to the generation of nonmigrating tides is caused by nonlinear interaction between migrating tides and a quasi-stationary planetary wave with zonal wave number 1 (SPW1). Taking into account the longitudinal ozone inhomogeneities in the model leads to the occurrence of additional sources of nonmigrating tides caused by longitudinally inhomogeneous heating of the atmosphere, the contribution of which can be comparable to that from nonlinear interaction under an attenuating amplitude of SPW1 in the stratosphere.  相似文献   

12.
This paper discusses the principles, achievements, and prospects for satellite solar occultation sounding of the middle atmosphere. Advantages, disadvantages, and spatial and temporal coverage capabilities are described. Progress over the past 15 years is reviewed, and results from a recent satellite aerosol experiment are presented. Questions with regard to Doppler shift, atmosphric refraction, instrument pointing, pressure sensing, and measurement of diurnally active species are addressed. Two experiments now orbiting on the Nimbus-7 and AEM-B satellites, and approved experiments under development for future flights on Spacelab and the Earth Radiation Budget Satellite, are also described. In some cases more than one experiment is scheduled to be flown on the same spacecraft, and the advantages and synergistic effects of these applications are discussed.  相似文献   

13.
Planetary waves with periods between two and four days in the middle atmosphere over Antarctica are characterized using one year of data from the medium-frequency spaced antenna (MFSA) radars at Scott Base, Rothera, and Davis. In order to investigate the origin of the observed waves, the ground-based data are complemented by temperature measurements from the Earth Observing System Microwave Limb Sounder (EOS MLS) instrument on the Aura satellite as well as wind velocity data from the United Kingdom Met. Office (UKMO) stratospheric assimilation. Observed characteristics of waves with a period of approximately two days in summer are consistent with the quasi-two-day wave (QTDW) generally found after the summer solstice at low- and mid-latitudes. The Scott Base observations of the QTDW presented here are the highest-latitude ground-based observations of this wave to date. Waves with preferred periods of two and four days occur in bursts throughout the winter with maximum activity in June, July, and August. The mean of the two- and four-day wave amplitudes is relatively constant, suggesting constant wave forcing. When several waves with different periods occur at the same time, they often have similar phase velocities, supporting suggestions that they are quasi-non-dispersive. In 2005, a “warmpool” lasts from late July to late August. An alternative interpretation of this phenomenon is the presence of a structure propagating with the background wind. Consideration of the role of vertical shear (baroclinic instabilities) and horizontal shear (barotropic instabilities) of the zonal wind suggests that instabilities are likely to play a role in the forcing of the two- and four-day waves, which are near-resonant modes and thus supported by the atmosphere.  相似文献   

14.
Using the temperature profiles retrieved from the Mars Climate Sounder(MCS) instrument onboard Mars Reconnaissance Orbiter(MRO) satellite between November 2006 and April 2013, we studied the seasonal and interannual variability of QuasiStationary Planetary Waves(QSPWs) in the Martian middle atmosphere. The QSPW amplitudes in the Southern Hemisphere(SH) high latitudes are significantly stronger than those in the Northern Hemisphere(NH). Seasonal variation with maximum amplitude near winter solstice of each hemisphere is clearly seen. The vertical structure of the QSPW in temperature shows double-layer feature with one peak near 50 Pa and the other peak near 1 Pa. The QSPW in geopotential height is clearly maximized in the region between two temperature peaks. The maximum amplitude of QSPW for s=1 is ~8–10 K in temperature and ~1 km in geopotential height in the SH high latitudes. The maximum amplitude at the SH high latitudes in Mars Year(MY) 31 is ~2 K stronger than those in other MYs, suggesting the clear interannual variability. We compared the satellite results with those obtained from the Mars Climate Database(MCD) simulation version 5.0; a reasonable agreement was found. The MCD simulation further suggested that the variability of dust might partially contribute to the interannual variability of QSPW amplitude.  相似文献   

15.
It is suggested that the gross mean vertical structure of the undisturbed tropical atmosphere may be understood in terms of convective boundary layers driven in different ways and on different time scales by the evaporation of water from the sea surface. The mixed layer on a short time scale is driven partly by the buoyancy produced by the light weight of the water vapor; the trade cumulus layer on an intermediate time scale by the buoyancy (but not heating) produced by the condensation of the water vapor in shallow trade cumulus clouds; and the troposphere itself on a long time scale by the buoyancyand heating produced by the condensation of the water vapor in the deep cumulonimbus clouds.May 1985This paper was issued as a Harvard University report in 1974. For this version only Section 5 has been rewritten. There has been sufficient interest in this work over the years to warrant making it more widely available through the open literature.Contribution No. 783 from NOAA/Pacific Marine Environmental Laboratory  相似文献   

16.
A review of the important constraints on gravity wave induced diffusion of chemical tracers, heat, and momentum is given. Ground-based microwave spectroscopy measurements of H2O and CO and rocket-based mass spectrometer measurements of Ar constrain the eddy diffusion coefficient for constituent transport (K zz ) to be (1–3)×105 cm2s–1 in the upper mesosphere. Atomic oxygen data also limitsK zz to a comparable value at the mesopause. From the energy balance of the upper mesosphere the eddy diffusion coefficient for heat transport (D H ) is, at most 6×105 cm2s–1 at the mesopause and decreasing substantially with decreasing altitude. The available evidence for mean wind deceleration and the corresponding eddy diffusion coefficient for momentum stresses (D M ) suggests that it is at least 1×106 cm2s–1, in the upper mesosphere. Consequently the eddy Prandtl number for macroscopic scale lengths is >3.  相似文献   

17.
A short review of research trends in the study of low-frequency mid-latitude variations is presented. Theoretical developments have been concentrated upon with the major themes of multiple equilibria, flow stability and eddy-mean flow interaction reflecting the authors main interests. A new interpretation of the role of transient eddies in maintaining atmospheric blocking is also suggested in which eddy potential vorticity fluxes are considered to mediate a downstream transition between a zonal and a steady free Rossby wave flow. This treatment avoids emphasizing local balances and fluxes by the transients which are often entirely or partially reversible. The consequences of this interpretation are explored in the barotropic model of blocking first presented by Shutts (1983). This interpretation is used to suggest conditions in which the jetstream may be unlikely to undergo transition to a blocked weather regime.  相似文献   

18.
火山活动对热带高空温度变化的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
本文利用序列回归分析、对比分析和个例分析法分析了火山活动对热带高空大气的温度效应. 主要结论为:火山活动影响最显著的高度是平流层70 hPa约22 km高空,由此高度向上或向下,火山活动的影响都逐渐减小;火山活动将引起平流层大气升温、对流层大气降温,其分界线大致位于对流层顶300 hPa附近;火山活动对于热带70 hPa高空温度距平变化的影响超过了总方差的45.7%;单独考察几次强火山活动(如阿贡火山、皮纳图博火山和厄尔奇冲火山等)的温度效应表明,在热带地区强火山爆发后的20个月内,对热带高空温度的影响超过了其距平变化的80%!成为该时段高空温度变化的决定性因素.  相似文献   

19.
Summary Geomagnetic storms belong to the most important phenomena of solar origin which affect the ionosphere and atmosphere. We study the responses of the lower ionosphere, middle stratospheric ozone, total ozone and the troposphere (vorticity area index at 500 hPa) to isolated and major geomagnetic storms. The expected positive effect is observed in the lower ionosphere. No observable effect is detected in the middle stratospheric ozone. An effect (not very significant) can be found in the total ozone and the troposphere.Contribution No, 109/90, Geophysical Institute, Czechosl. Acad. Sci., Prague.  相似文献   

20.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号