首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Cathodoluminescence (CL) spectra of unirradiated, He+ ion-implanted and electron-irradiated plagioclase minerals contain the following emission bands: (1) below 300 nm due to Pb2+, (2) at ~320 and ~350 nm to Ce3+, (3) at 380–420 nm to Eu2+, Ti4+ and/or Al–O?–Al/Ti defects, (4) at 560–580 nm to Mn2+ and (5) at 720–760 nm to Fe3+. During the implantation of He+ ion, much of their energy may be dissipated by partial destruction and strain of the feldspar framework, resulting in quenching of CL. Deconvolution of CL spectra acquired from albite and oligoclase reveals an emission component at 1.86 eV (666 nm) assigned to a radiation-induced defect center associated with Na+ atoms. As its intensity increases with radiation dose, this emission component has potential for geodosimetry and geochronometry. Electron irradiation causes Na+ migration in plagioclase, and then a considerable reduction in intensity of emissions assigned to impurity centers, which is responsible for an alteration in the energy state or a decrease in luminescence efficiency following the change of activation energy. Emission intensity at 1.86 eV positively correlates with electron irradiation time for unimplanted and He+ ion-implanted albite and oligoclase, but negatively for the implanted albite above 1.07 × 10?4 C/cm2. It implies that radiation halo produced by α-particles should not be measured using CL spectroscopy to estimate β radiation dose on albite in the high radiation level.  相似文献   

2.
Results are presented for the radio-, cathodo- and ionoluminescence (RL, CL and IL) of an ordered, exsolved alkali feldspar from South Greenland (BM2). BM2, a microperthite typical of many evolved rocks, has a broad red near-infrared luminescence, which, using lifetime-resolved CL, reveals four overlapping emissions, of which two are dominant. These derive from Fe3+-activated luminescence from the low albite and maximum microcline components of the microperthite in which the Fe is on the most ordered tetrahedral site. The temperature dependence of the emission shows a smooth change from longer wavelengths at 20 K to shorter values at room temperature. There is a broad relationship between Fe-O bond distance and the energy of the luminescence. Comparisons of RL, CL and IL allow features in the luminescence associated with surface states to be identified. The dependence of red RL intensity versus temperature is divided into four regions for which the activation energies and temperature ranges are estimated. Variations in RL intensity between 67 and 225 K are interpreted as a phase transition in microcline. RL intensity indicates a multi-stage transformation, proceeding via a first step between 67 and ~100 K in which luminescence intensity increases, followed by a region between 100 and ~225 K in which intensity falls. A discontinuity in intensity at ~225 K marks the end of the second region. These variations may result from changes in the bond angles of bridging oxygens. IL dose dependence studies have been performed. As implantation progresses, the red/IR emission profile skews towards short wavelengths, reflecting amorphisation of the structure and local variations in Fe-O bond distances. If the sample recovers for 24 h, the luminescence profile partly returns to its original state, but remains skewed, reflecting partial resumption of short-range order. Such profiles are also observed from natural shocked feldspars, and it may be that ion beam damage is akin to structural modifications associated with impact events. Ion implantation also causes the formation or enhancement of UV, blue and yellow emissions. Recovery of the sample over 24 h causes the UV and blue emissions to be greatly reduced, whereas the yellow emission may be enhanced. Tentative interpretations of this behaviour are presented.  相似文献   

3.
Kunzite, the pink, manganese-bearing variety of spodumene, is strongly luminescent under UV or electron beam excitation. Laser excitation of an oriented kunzite single crystal has been used to determine the polarization dependence of the luminescence. The emission spectrum, assigned to an Mn2+ center, can be fitted by two Gaussian bands with maxima at 16 568 and 15 679 cm–1. Analysis of the temperature dependence of emission intensity and band width give estimates of the frequency of the phonons assisting the luminescence transitions. These appear to be bond stretching modes of the octahedral site. Analysis of the polarization dependence of emission intensity allows determination of the orientation of the emission dipole. Comparison of the polarization dependence of excitation and emission radiation shows that coupling between absorption dipole and emission dipole is incoherent.Work supported by the National Science Foundation under Grant No. DMR-74-00340  相似文献   

4.
This work explores the potential of laser excited luminescence for the study of type and concentration of rare-earth (RE) luminescence centres in CaF2. A comparison with X-ray excited luminescence is made. The luminescence spectra of several natural and synthetic samples are obtained at low and room temperatures using different Ar+ and Kr+ laser lines for excitation. Tentative assignment of the luminescent lines to different RE2+ and RE3+ ions is made. The excitation is shown to take place predominantly through the emission of one phonon. The possibilities for concentration measurements of luminescent centres are discussed.  相似文献   

5.
The sodalite sample used in this investigation did not exhibit the characteristic orange-yellow luminescence due to the $ {\text{S}}_{ 2}^{ - } $ center, because there was no trace of sulfur impurity. The heat-treated samples exhibited green and red luminescence with maximum intensity at 496 and 687 nm, respectively, under 264 nm excitation at room temperature. Their luminescence intensities were extensively dependent on the treatment temperature. The green luminescence efficiency of the sample heat-treated at 900 °C was 6.5 times higher than that of unheated natural sodalite. At 8.5 K, the green luminescence showed a vibronic structure. After heating at 1,300 °C, the crystal structure of sodalite was transformed to NaAlSiO4 (carnegieite), and the intense red luminescence was exhibited in the NaAlSiO4 sample. The peak wavelength of the red luminescence shifted from 687 nm at 300 K to 726 nm at 8.5 K. The luminescence lifetimes of the green and red luminescence at room temperature were 2.1 and 5.1 ms, respectively. It was proposed that the origin of the green luminescence is Mn2+ replacing Na+, and that of the red luminescence is Fe3+ replacing Al3+ in sodalite or NaAlSiO4 (carnegieite).  相似文献   

6.
Implantation of high-energy cobalt ions into plates of synthetic rutile has been studied, and absorption, luminescence, and luminescence excitation spectra have been recorded and interpreted. Long-wave luminescence (820 nm) of Ti IV 3+ ions in rutile has been revealed; its intensity increased after the cobalt implantation. Analysis of luminescence and luminescence excitation spectra has allowed us to specify the scheme of electron energy levels of rutile and to establish the energy levels of impurity Ti3+ ions occupying vacant octahedrons with the C 2h symmetry in structure of the mineral.  相似文献   

7.
The accumulation of structural damage that is created in minerals upon corpuscular irradiation, has two apparently contrarious effects on their luminescence behaviour. First, irradiation may cause the generation of luminescent defect centres, which typically results in broad-band emissions. Such defect emissions are characteristic of low levels of radiation damage. Second, radiation damage depletes in general the luminescence of minerals, which is associated with broadenings and intensity losses of individual emission lines. Minerals that have suffered elevated levels of irradiation hence tend to be virtually non-luminescent. This review paper aims at giving an overview of the possible correlations of radiation damage and emission characteristics of minerals. After a brief, introductory summary of the damage-accumulation process and its causal corpuscular radiation, an array of examples is presented for how internal and/or external irradiation may change appreciably the emission of rock-forming and accessory minerals. As a detailed example for the complexity of changes of emissions upon damage accumulation, preliminary results of a case study of the photoluminescence (PL) of synthetic CePO4 irradiated with 8.8 MeV He ions are presented. Irradiation-induced spectral changes include (i) the initial creation, and subsequent depletion, of a broad-band, defect-related PL emission of orange colour, and (ii) gradual broadenings and intensity losses of PL lines related to electronic transitions of rare-earth elements, eventually leading to gradual loss of their splitting into multiple Stark levels (shown for the 4F3/24I9/2 transition of Nd3+).  相似文献   

8.
The study of radiation of intrinsic and impurity excitations in natural barite showed that the patterns of BaSO4 luminescence were mostly controlled by the presence of the [SO4] anion complex. Several types of self-radiation were registered including those at the expense of the presence of O2– ions of the axial and nonaxial configurations of the anionic group (emission bands within the wavelength ranges of 209–213 and 330–350 nm, respectively). Exitons located near the impurity and intrinsic defects largely participate in emission. Impurity defects participating in the luminescent centers of barite from the Ore Altai include Pb2+, Gd3+, Eu2+, Eu3+, Cu+, and Ag+ (under X-ray excitation). Variations in the spectral composition of barite indicate the different conditions of its formation.  相似文献   

9.
The luminescence spectra of a suite of natural sodium framework silicates including four different sodalite variants and tugtupite have been collected during X-ray irradiation as a function of temperature between 20 and 673 K. The origin of the emission bands observed in these samples is attributed to F-centres (360 nm), paramagnetic oxygen defects (400 and 450 nm), S2 ? ions (620 nm) and tetrahedral Fe3+ (730 nm). Luminescence in the yellow (550 nm) is tentatively attributed to Mn2+, and red luminescence in Cr-rich pink sodalite is possibly from Cr3+ activation. Sudden reduction in luminescence intensities of emission centres was observed for all minerals in the 60–120 K range. Since it is common to all the sodalite-group minerals, we infer it is a feature of the aluminosilicate framework. Sodalite luminescence has responses from substitutions on the framework (e.g. paramagnetic oxygen defects, Fe3+) which give sodalite properties akin to other framework silicates such as feldspar and quartz. However, the presence of the sodalite cage containing anions (such as F-centres, S2 ? ions) imparts additional properties akin to alkali halides. The possibility of coupling between Fe3+ and S2 ? is discussed. The overall luminescence behaviour of sodalite group can be understood in terms of competition between these centre types.  相似文献   

10.
The paper summarises new data and results referring to the characterization of the nature of luminescence centres in minerals that were published during the last 8 years. Besides well-established luminescence centres, such as Mn2+, Fe3+, Cr3+, divalent and trivalent rare-earth elements, S2 ?, and Pb2+, several other centres were proposed and substantiated, such as Mn3+, Mn4+, V2+, Ni2+, Pb+, Mn3+, Sb3+, Tl+, and radiation-induced centres. Also, a relatively new type of luminescence excitation mechanism is discussed briefly, namely plasma-induced luminescence. Here, the emission takes place when the matrix, where the formation of plasma is caused by irradiation with a beam of laser light, is capable to luminescence and contains luminescence centres.  相似文献   

11.
For the first time, the luminescence properties of Pr3+, Nd3+ and Tm3+ and Yb3+ ions in fluorite crystal have been obtained by steady-state measurements. In addition, the luminescence spectra of Ce3+, Sm2+, Sm3+, Dy3+, Er3+ and Yb3+ were measured. It was pointed out that λexc.?=?415?nm is most suitable for measuring the Ho3+ emission beside the Er3+. The emission of trivalent holmium and erbium ions was measured independently using time-resolved measurements and tentative assignment of luminescence lines to C 3v and C 4v symmetry sites was proposed. Besides for natural fluorite crystal, the transitions between Stark energy levels of lanthanide ions were presented.  相似文献   

12.
Summary Investigations of natural and synthetic quartz specimens by cathodoluminescence (CL) microscopy and spectroscopy, electron paramagnetic resonance (EPR) and trace-element analysis showed that various luminescence colours and emission bands can be ascribed to different intrinsic and extrinsic defects. The perceived visible luminescence colours in quartz depend on the relative intensities of the dominant emission bands between 380 and 700 nm. Some of the CL emissions of quartz from the UV to the yellow spectral region (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) can be related to intrinsic lattice defects. Extrinsic defects such as the alkali (or hydrogen)-compensated [AlO4/M+] centre have been suggested as being responsible for the transient emission band at 380–390 nm and the short-lived blue-green CL centered around 500 nm. CL emissions between 620 and 650 nm in the red spectral region are attributed to the nonbridging oxygen hole centre (NBOHC) with several precursors. The weak but highly variable CL colours and emission spectra of quartz can be related to genetic conditions of quartz formation. Hence, both luminescence microscopy and spectroscopy can be used widely in various applications in geosciences and techniques. One of the most important fields of application of quartz CL is the ability to reveal internal structures, growth zoning and lattice defects in quartz crystals not discernible by means of other analytical techniques. Other fields of investigations are the modal analysis of rocks, the provenance evaluation of clastic sediments, diagenetic studies, the reconstruction of alteration processes and fluid flow, the detection of radiation damage or investigations of ultra-pure quartz and silica glass in technical applications. Zusammenfassung Ursachen, spektrale Charakteristika und praktische Anwendungen der Kathodolumineszenz (KL) von Quarz – eine Revision Untersuchungen von natürlichen und synthetischen Quarzproben mittels Kathodolumineszenz (KL) Mikroskopie und -spektroskopie, Elektron Paramagnetischer Resonanz (EPR) und Spurenelementanalysen zeigen verschiedene Lumineszenzfarben und Emissionsbanden, die unterschiedlichen intrinsischen und extrinsischen Defekten zugeordnet werden k?nnen. Die sichtbaren Lumineszenzfarben von Quarz werden durch unterschiedliche Intensit?tsverh?ltnisse der dominierenden Emissionsbanden zwischen 380 und 700 nm verursacht. Einige der KL Emissionen vom UV bis zum gelben Spektralbereich (175 nm, 290 nm, 340 nm, 420 nm, 450 nm, 580 nm) stehen im Zusammenhang mit intrinsischen Defekten. Die kurzlebigen Lumineszenzemissionen bei 380–390 nm sowie 500 nm werden mit kompensierten [AlO4/M+]-Zentren in Verbindung gebracht. Die KL-Emissionen im roten Spektralbereich bei 620 bis 650 nm haben ihre Ursache im “nonbridging oxygen hole centre” (NBOHC) mit verschiedenen Vorl?uferzentren. Die unterschiedlichen KL-Farben und Emissionsspektren von Quarz k?nnen oft bestimmten genetischen Bildungsbedingungen zugeordnet werden und erm?glichen deshalb vielf?ltige Anwendungen in den Geowissenschaften und in der Technik. Eine der gravierendsten Einsatzm?glichkeiten ist die Sichtbarmachung von Internstrukturen, Wachstumszonierungen und Defekten im Quarz, die mit anderen Analysenmethoden nicht oder nur schwer nachweisbar sind. Weitere wesentliche Untersuchungsschwerpunkte sind die Modalanalyse von Gesteinen, die Eduktanalyse klastischer Sedimente, Diageneseuntersuchungen, die Rekonstruktion von Alterationsprozessen und Fluidmigrationen, der Nachweis von Strahlungssch?den oder die Untersuchung von ultrareinem Quarz und Silikaglas für technische Anwendungen. Received March 29, 2000 Accepted October 27, 2000  相似文献   

13.
The data on photoluminescence (PL) that precisely detects Eu2+ centers and X-ray luminescence (XL) were compared for plagioclases and potassium feldspars in 21 samples from muscovite pegmatites of the Mama region. The Eu contents determined in 10 samples vary from 10?4 to 10?6 wt %. Europium occurs mainly as bivalent species that replaces Sr2+, Ca2+, and Ba2+. Eu is gained in the products of early crystallization, and its relative amounts decrease by an order of magnitude in the course of pegmatite formation down to complete disappearance in late generations of feldspars. It is shown that Eu2+ can be detected in XL spectra, and the Eu2+ content can be determined in qualitative terms, for instance, by the intensity of radiation band 400–420 nm in plagioclase.  相似文献   

14.
The ultrafast transient photoluminescence of impact silica-rich glasses and nanostructured opals is investigated at the (sub)nanosecond time scale. Spectral and temporal data were acquired with a high-resolution streak camera under high-density energy laser excitation at 4.17 eV (297 nm). All samples reveal blue photoluminescence relaxing in less than 50 ns. Relaxation decays and luminescence energy vary strongly from opals to impact glasses. Opals are found to relax in less than 16 ns with a maximum emission at 2.6–2.8 eV (443–477 nm) while the high-silica glasses exhibit a much longer luminescence in the 50-ns time window, which is spectrally blueshifted towards 3.0–3.5 eV (354–413 nm). Results are interpreted in terms of the presence of nonbridging oxygen atoms, network modifiers, and nanostructures which produce emission from self-trapped excitons and from excitons recombining at surface defects. The short-lived emissions of opals are characteristic of intrinsic surface photoluminescence quenched after about 10 ns via nonradiative decay channels with an annihilation component, and involve recombination luminescence of self-trapped excitons.  相似文献   

15.
The spatial and temporal variability of Hg emissions from urban paved surfaces was assessed through repeated measurements under varying environmental conditions at six sample sites in Toronto, Ontario, Canada. The results show significant spatial variability of the Hg emissions with median values ranging from below detection limit to 5.2 ng/m2/h. Two of the sites consistently had higher Hg emissions (on several occasions >20 ng/m2/h) than the other 4, which were equivalently low (maximum emission: 2.1 ng/m2/h). A surrogate measure of the pavement Hg concentrations was obtained during each day of sampling through the collection of street dust. The median street dust concentration also showed significant spatial variability (ranging from 9.6 to 44.5 ng/g). Regression analysis showed that the spatial variability of the Hg emissions was significantly related to the street dust concentrations. Controlled experiments using Hg amended street dust confirmed the relationship between Hg surface concentration and emission magnitude. Within a given sample site, Hg emissions varied temporally and multiple regression analysis showed that within-site variability was significantly influenced by changes in solar radiation with only a minor effect from surface temperature. Controlled experiments using shade cloths confirmed that solar radiation can have a large influence on the magnitude of Hg emissions within a given site. The emissions measured in Toronto were contextualized through comparison sampling in Austin, Texas. The Hg emissions measured in Austin were within the range detected in Toronto and also showed significant correlation with Hg street dust concentrations between sites. To provide a holistic assessment of Hg emissions from urban environments, samples were also collected from other common urban surfaces (soil, roofs, and windows). Soils consistently had higher emissions than all the other surfaces (7.3 ng/m2/h, n = 39).  相似文献   

16.
Summary This work examines the red luminescence of benitoite studied by laser-induced time-resolved luminescence spectroscopy. This method allows the differentiation between luminescence centers of similar emission wavelengths, but different decay times. We have also examined the luminescence intensity and decay time as a function of temperature. We found that the red emission of benitoite consists of two individual bands and one line and suggest that the activators of luminescence in benitoite system are Ti3+ and a d3 element, namely Cr3+ or Mn4+.  相似文献   

17.
Summary The temperature dependence of photoluminescence emission of a natural fluorite has been studied in the wavelength region of 380–500 nm and in the temperature range of 17.5–300 K. The emission spectra of the sample show a broad emission band between 380 and 500 nm for temperatures above 100 K. At 100 K and below, vibronic lines appear on the emission band at approximately 413.3, 418.1, 419.3, 420.2, 423.9 and 427.1 nm. This broad emission band and the vibronic lines in fluorite are usually associated with phonon-coupled electronic transitions from 4f65d to 4f7 in the Eu2+ ion. Temperature dependences of the peak energy, intensity and full-width at half-maximum of the broad emission band are discussed, and the behaviour explained in terms of a configurational coordinate model. The excited state vibrational energy was obtained to be 0.023 ± 0.001 eV and this is lower than the LO phonon energy of 0.062 eV in pure fluorite. The activation energy of thermal quenching of the photoluminescence intensity was found to be 0.022 ± 0.002 eV.  相似文献   

18.
The distribution and dynamics of water molecules and monovalent cations (Li+, Na+, K+, Cs+, and H3O+) on muscovite surfaces were investigated by molecular dynamics (MD) simulations. The direct comparison of calculated X-ray reflectivity profiles and electron density profiles with experiments revealed the precise structure at the aqueous monovalent electrolyte solutions/muscovite interface. To explain the experimentally observed electron density profiles for the CsCl solution-muscovite interface, the co-adsorption of Cs+ and Cl ion pairs would be necessary. Two types of inner-sphere complexes and one type of outer-sphere complex were observed for hydrated Li+ ions near the muscovite surface. For Na+, K+, Cs+, and H3O+ ions, the inner-sphere complexes were stable on the muscovite surface. The density oscillation of water molecules was observed to approximately 1.5 nm from the muscovite surface. The number of peaks and the locations for the density of water oxygen atoms were almost similar among the water molecules coordinated to Li+, Na+, K+, and H3O+ ions adsorbed on the muscovite surfaces. The water molecules around Cs+ ions that were adsorbed to muscovite surfaces seemed to avoid coordinating with Cs+ ions on the surface, and the density of water oxygen near the muscovite surface decreased relative to that in a bulk state. There was no significant difference in self-diffusion, viscosity, retention time, and reorientation time of water molecules among different cations adsorbed to muscovite surfaces. These translational and rotational motions of water molecules located at less than 1 nm from the muscovite surfaces were slower than those in a bulk state. A significant difference was observed for the exchange times of water molecules around monovalent cations. The exchange time of water molecules was long around Li+ ions and decreased with an increase in the ionic radius.  相似文献   

19.
It is proved that blue luminescence from benitoite is connected with intrinsic luminescence centers, namely isolated TiO6 octahedra. The metastable level 3T1u is the emitting level at low temperatures with a long decay time of 1.1 ms. At higher temperatures an energy level with higher radiation probability must be involved in the emission process, and this level is situated at 0.06 eV higher than the lowest level. These two levels may be connected with 3T1u level splitting or with closely spaced 3T1u and 3T2u levels. Decay time shortening and thermal quenching are connected with nonradiative decay within the TiO6 luminescence center, while energy migration does not take place at least up to room temperature.  相似文献   

20.
Field Emission SEM (FESEM) textural observations, crystal size distribution (CSD) analyses, UV-excited luminescence imaging, and photoluminescence (PL) microspectroscopy excited by 488 nm laser were conducted on two texturally contrasting samples of carbonado, a kind of natural polycrystalline diamond from the Central African Republic (CAR). The investigated carbonado samples A and B show extremely different textures: sample A is made up of faceted crystals accompanied by abundant, small rectangular pores, whereas sample B has a granular texture with coarser crystals and scarce, large pores. Diamond crystals smaller than 2–3 µm are enriched in sample A but depleted in sample B. These textural features indicate that sample B diamonds were annealed under thermodynamically stable P–T conditions. The pore characteristics indicate that fluid permeability was higher for sample A than sample B. Photoluminescence (PL) spectra indicate that samples A and B correspond to Group A and B carbonados in the classification of Kagi et al. (1994), respectively, so that sample A reveals emissions from the H3 center without any N–V0 derived emission at 575 nm, whereas sample B shows emissions from the 3H center and the N–V0 defect. In addition, UV-excited luminescence images and photoluminescence spectra for sample B indicate that the rims of diamond crystals within several microns of a pore show luminescence features similar to those of Group AB carbonados (Kagi et al., 1994), indicating that this Group AB material was formed from Group B by irradiation from pore-filling, radioactive-element-bearing materials at a low temperature. The extent of the low-temperature irradiation is considered to depend on fluid permeability, and the Group A material was strongly irradiated due to its permeable texture whereas the Group B material was not significantly irradiated due to its less permeable granular texture. These results indicate that Group B carbonados have retained their original PL spectral features produced under high pressures and temperatures at mantle depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号