首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The roles of neutrinos and convective instability in collapsing supernovae are considered. Spherically symmetrical computations of the collapse using the Boltzmann equation for the neutrinos lead to the formation of the condition of convective instability, \({\left( {\frac{{\partial P}}{{\partial s}}} \right)_{\rho {Y_l}}}\frac{{ds}}{{dr}} + {\left( {\frac{{\partial P}}{{\partial {Y_L}}}} \right)_{\rho s}}\frac{{d{Y_L}}}{{dr}}\) < 0, in a narrow region of matter accretion above the neutrinosphere. If instability arises in this region, the three-dimensional solution will represent a correction to the spherically symmetrical solution for the gravitational collapse. The mean neutrino energies change only negligibly in the narrow region of accretion. Nuclear statistical equilibrium is usually assumed in the hot proto-neutron stellar core, to simplify the computations of the collapse. Neutronization with the participation of free neutrons is most efficient. However, the decay of nuclei into nucleons is hindered during the collapse, because the density grows too rapidly compared to the growth in the temperature, and an appreciable fraction of the energy is carried away by neutrinos. The entropy of the matter per nucleon is modest at the stellar center. All the energy is in degenerate electrons during the collapse. If the large energy of these degenerate electrons is taken into account, neutrons are efficiently formed, even in cool matter with reduced Ye (the difference between the numbers of electrons and positrons per nucleon). This process brings about an increase in the optical depth to neutrinos, the appearance of free neutrons, and an increase in the entropy per nucleon at the center. The convectively unstable region at the center increases. The development of large-scale convection is illustrated using a multi-dimensional gas-dynamical model for the evolution of a stationary, unstable state (without taking into account neutrino transport). The time for the development of convective instability (several milliseconds) does not exceed the time for the existence of the unstable region at the center (10ms). The realization of this type of instability is fundamentally different from a spherically symmetrical model. The flux of neutrinos changes and the mean energy of the neutrinos is increased, which has important implications for the detection of neutrinos from supernovae. For these same reasons, the energy absorped in the supernova envelope also changes in the transition to such a multi-dimensional model.  相似文献   

2.
3.
4.
5.
6.
Results of a study of the variability of the BL Lac object S5 0716+714 are reported. The data were obtained in 150 daily observations on the RATAN-600 radio telescope at six frequencies from 0.97 to 21.7 GHz and 13 day-long sessions at a wavelength of 6.2 cm on the 32 m radio telescopes of the Zelenchukskaya, Svetloe, and Badary observatories (Quasar-KVO complex, Institute of Applied Astronomy, Russian Academy of Sciences). The RATAN-600 observations detected three “anti-flares,” or eclipses, when the flux density decreased from an initially constant level and then returned to this level. The eclipse time scales obtained from an analysis of light curves, structure functions, and autocorrelation functions are 12–20 days; the eclipse spectra were determined. Intraday variability (IDV) with time scales of 10–12 hours was detected in three sessions on the 32-m radio telescopes.  相似文献   

7.
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 to $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 , D values for highly charged elements vary from $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 through $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 and $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 to $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 , and are all virtually independent of temperature. Cr and Co are the only compatible trace elements at the studied conditions. To elucidate charge-balancing mechanisms for incorporation of REE into Opx and to assess the possible influence of Fe on Opx-melt partitioning, we compare our experimental results with computer simulations. In these simulations, we examine major and minor trace element incorporation into the end-members enstatite (Mg2Si2O6) and ferrosilite (Fe2Si2O6). Calculated solution energies show that R2+ cations are more soluble in Opx than R3+ cations of similar size, consistent with experimental partitioning data. In addition, simulations show charge balancing of R3+ cations by coupled substitution with Li+ on the M1 site that is energetically favoured over coupled substitution involving Al–Si exchange on the tetrahedrally coordinated site. We derived best-fit values for ideal ionic radii r 0, maximum partition coefficients D 0, and apparent Young’s moduli E for substitutions onto the Opx M1 and M2 sites. Experimental r 0 values for R3+ substitutions are 0.66–0.67 ? for M1 and 0.82–0.87 ? for M2. Simulations for enstatite result in r 0 = 0.71–0.73 ? for M1 and ~0.79–0.87 ? for M2. Ferrosilite r 0 values are systematically larger by ~0.05 ? for both M1 and M2. The latter is opposite to experimental literature data, which appear to show a slight decrease in $ r_{0}^{{{\text{M}}2}} $ r_{0}^{{{\text{M}}2}} in the presence of Fe. Additional systematic studies in Fe-bearing systems are required to resolve this inconsistency and to develop predictive Opx-melt partitioning models for use in terrestrial and lunar magmatic differentiation models.  相似文献   

8.
The chemical composition of 2188 terrestrial igneous rocks ranging from ultrabasic to granitic composition was analyzed statistically using the method of factor analysis (principal components). The resultant first and second factors were: $$\begin{gathered} {\text{ }}F_1 = 0.933{\text{ Na}}_{\text{2}} {\text{O + 0}}{\text{.143 SiO}}_{\text{2}} + 0.206{\text{ K}}_{\text{2}} {\text{O}} - 0.346{\text{ CaO}} - 0.263{\text{ MgO}} - \hfill \\ .203{\text{ FeO}} \pm \cdot \cdot \cdot \hfill \\ {\text{ }}F_2 = 0.979{\text{ Al}}_{\text{2}} {\text{O}}_{\text{3}} - 0.269{\text{ MgO}} - 0.151{\text{ SiO}}_{\text{2}} - 0.112{\text{ FeO}} \pm \cdot \cdot \cdot \hfill \\ \end{gathered} $$ where oxides are in weight percent. A plot of the first factor against the second results in a useful igneous variation diagram. When the compositions of the 2188 terrestrial rocks and 604 lunar rocks are plotted on this diagram, the two groups of rocks are clearly separated within an albite-anorthite-forsterite-fayalite-quartz polygon. None of the terrestrial differentiation trends are significant for lunar rocks. The major difference in the chemistry of lunar and terrestrial rocks lies in the former being albite poor. Removal of most of the albite from the compositions of terrestrial layered intrusives such as the Skaergaard results in an excellent match between the compositions of the two groups of rocks. Albite subtracted compositions of Skaergaard rocks in particular cover the entire range of chemical variation in the lunar rocks. The statistical results prompt us to speculate further on the similarity of the moon and Skaergaard. We note that the average composition of the moon (Wanke et al., 1974) is similar to the albite subtracted composition of the Skaergaard magma. The lunar crust and a significant part of the lunar interior may match the albite subtracted and somewhat Mg enriched Skaergaard magma.  相似文献   

9.
10.
Observations of the gravitationally lensed quasar SBS 1520+530 obtained in 2000–2001 on the 1.5-m telescope of the Ma $\overset{\lower0.5em\hbox{$\overset{\lower0.5em\hbox{ danak Observatory (Uzbekistan) are presented. The photometric algorithms used to observe the components of SBS 1520+530 are discussed. The images have a resolution of 0.5″–0.6″, enabling us to detect the lensing galaxy in the R and I bands and to measure its luminosity and coordinates. The results of photometric observations of components A and B of SBS 1520+530 are presented; the light curves show variability on various time scales from a few weeks to a year. A gravitational-lens model for SBS 1520+530 is constructed utilizing all currently available data.  相似文献   

11.
12.
Baushev  A. N. 《Astronomy Reports》2020,64(12):1005-1011
Astronomy Reports - Being generated, the relic neutrino background contained equal fractions of electron $${{\nu }_{e}}$$ , muon $${{\nu }_{\mu }}$$ , and taon $${{\nu }_{\tau }}$$ neutrinos. We...  相似文献   

13.
Results of the observations of the blazar J1159+2914 (S1156+295) in 2010–2013 are reported. The observations were carried out on the RATAN-600 radio telescope (Special Astrophysical Observatory, Russian Academy of Sciences) at 4.85, 7.7, 11.1, and 21.7 GHz and the 32-m Zelenchuk and Badary radio telescopes of the Quasar-KVO Complex (Institute of Applied Astronomy, Russian Academy of Sciences) at 4.85 and 8.57 GHz. A flare peaked in August 2010, after which the flux density decreased monotonically at all studied frequencies. Variability on a timescale of 7 days was detected at 7.7 and 11.1 GHz near the flare maximum. The delay in the maximum at 7.7 GHz relative to the maximum at 11.1 GHz was 1.5 d, implying a Lorentz factor γ = 55 and angle of the jet to the line of sight θ ≈ 2° since mid-2011. Searches for intraday variability (IDV) were undertaken by the 32-m telescopes, mostly since mid-2011. Intraday variability was confidently detected only at the Badary station on November 10–11, 2012 at 4.85 GHz: the IDV timescale was τ acf = 6 h, the modulation index was m = 1.4%, and the flux density of the variable component was S var = 126 mJy.  相似文献   

14.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

15.
The influence of dark gravitating matter on the present-day Sun and its evolution is studied. Numerical simulations show that substantial departures of the main model parameters (luminosity, effective temperature, neutrino flux, and age) from the modern solar parameters would occur if the relative mass of dark matter exceeded 2–5% of the solar gravitational mass. The flux of solar neutrinos is relatively insensitive to the presence of uniformly distributed dark matter. However, a strong concentration of dark matter toward the center of the Sun would increase the neutrino flux beyond the observational limits.  相似文献   

16.
Results of radio observations of the cosmic gamma-ray burst GRB 080319B at 8.45 GHz during the afterglow are reported. The observations were carried out on telescopes of the Zelenchukskaya and Svetloe Observatories of the Institute of Applied Astronomy, Russian Academy of Sciences. Two outbursts in the radio brightness were detected in the afterglow of GRB 080319B. A total of 148 radio observations were performed at 3.5, 6.2, and 13 cm. The observations were conducted in a mode with smooth scanning in elevation, which was also used to update the flux densities of the primary reference sources. The first powerful radio outburst was recorded on March 28, 2008, 6.86d after the gamma-ray burst, when the maximum flux density was F 8.45 GHz = 44 ± 12 mJy. Almost two months later, a second increase in the radio brightness was observed. The flux density monotonically increased from 19 mJy (59.55d) to 34mJy (59.79d) over 6.5 h; 1.17 d later, the flux density fell to 12mJy.At this last epoch, the radio flux demonstrated variability within 3σ on timescales of 9d−10d. The detected radio brightness increases are interpreted in terms of MHD interactions of a fast plasma outflow with a cloud of inhomogeneous surrounding medium. This interaction is accompanied by restructuring of the relativistic plasma outflow; the analysis of this process has been carried out.  相似文献   

17.
Volvach  L. N.  Volvach  A. E.  Larionov  M. G.  Wolak  P.  Kramer  B.  Menten  K.  Kraus  A.  Brand  J.  Zanichelli  A.  Poppi  S.  Rigini  S.  Ipatov  A. V.  Ivanov  D. V.  Mikhailov  A. G.  Mel’nikov  A. 《Astronomy Reports》2019,63(8):652-665

The most powerful flare ever registered in the Galactic water-maser source W49N has been detected in long-term monitoring data in the 616–523 transition with line frequency f = 22.235 GHz carried out on the 22-m Simeiz, 32-m Toruń, 100-m Effelsberg, and 32-m Medicina radio telescopes, beginning in September 2017 and continuing in 2018. Some stages of the flare were monitored daily. Detailed variations of the source spectral flux density with time have been obtained. At the flare maximum, the flux exceeded P ≈ 8 × 104 Jy, and this was record highest flux registered over the entire history of observations of this source. Important conclusions related to details of the mechanism for the H2O line emission have been drawn. An exponential increase in the flare flux density was detected during both the rise and decline of the flare. The data obtained indicate that the maser is unsaturated, and remained in this state up to the maximum observed flux densities. Additional support for the idea that the maser is unsaturated is the shape of the dependence of the line width on the flux. The characteristics of the variations of the spectral flux density are probably associated with a sharp increase in the density of the medium and the photon flux that led to an increase in the temperature from an initial level of 10–40 K to hundreds of Kelvins. Interferometric maps of the object during the increase in the spectral flux density of the flare have been obtained. A possible mechanism for the primary energy release in W49N is considered.

  相似文献   

18.
19.
Equilibrium Zn isotope fractionation was investigated using first-principles quantum chemistry methods at the B3LYP/6-311G* level. The volume variable cluster model method was used to calculate isotope fractionation factors of sphalerite, smithsonite, calcite, anorthite, forsterite, and enstatite. The water-droplet method was used to calculate Zn isotope fractionation factors of Zn2+-bearing aqueous species; their reduced partition function ratio factors decreased in the order \(\left[ {{\text{Zn}}\left( {{\text{H}}_{2} {\text{O}}} \right)_{6} } \right]^{2 + } > \left[ {{\text{ZnCl}}\left( {{\text{H}}_{2} {\text{O}}} \right)_{5} } \right]^{ + } > \left[ {{\text{ZnCl}}_{2} \left( {{\text{H}}_{2} {\text{O}}} \right)_{4} } \right] > \left[ {{\text{ZnCl}}_{3} \left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } > {\text{ZnCl}}_{4} ]^{2 - }\). Gaseous ZnCl2 was also calculated for vaporization processes. Kinetic isotope fractionation of diffusional processes in a vacuum was directly calculated using formulas provided by Richter and co-workers. Our calculations show that in addition to the kinetic isotope effect of diffusional processes, equilibrium isotope fractionation also contributed nontrivially to observed Zn isotope fractionation of vaporization processes. The calculated net Zn isotope fractionation of vaporization processes was 7–7.5‰, with ZnCl2 as the gaseous species. This matches experimental observations of the range of Zn isotope distribution of lunar samples. Therefore, vaporization processes may be the cause of the large distribution of Zn isotope signals found on the Moon. However, we cannot further distinguish the origin of such vaporization processes; it might be due either to igneous rock melting in meteorite bombardments or to a giant impact event. Furthermore, isotope fractionation between Zn-bearing aqueous species and minerals that we have provided helps explain Zn isotope data in the fields of ore deposits and petrology.  相似文献   

20.
Samples returned from the surface of planetary bodies are both complementary to orbital and in situ observations and provide a unique perspective for understanding the nature and evolution of that body. This unique perspective is based on the scale the sample is viewed (mm-Å), the ability to manipulate the sample, the capability to analyze the sample at high precision and accuracy, and the ability to significantly modify experiments as logic and technology dictates over an extended period of time (decades). Unlike the Apollo missions, robotic sample return missions in the next decade will result in the return of relatively small sample mass. Such robotically returned samples are scientifically more valuable if they can be placed within a planetary context through orbital observations and if information concerning planetary-scale processes and conditions can be extracted from them. Conversely, samples give remotely sensed data ground truth. That is, they act as a “calibration standard” for these data allowing a much enhanced global view to be constructed.The Moon is an example that illustrates how information can be extracted from small samples and then extended to planetary and solar system scales. Three examples from the Moon illustrate this point. First, multi-analytical and experimental studies of minute (10-500 μm) glass beads representing near-primary magmas provide constraints on the composition and condition of the lunar mantle, the style of early planetary differentiation, the history and character of early mantle dynamics and melting, and the isolation of the lunar mantle from late-stages of lunar accretion. Second, trace element analysis of individual mineral grains via ion microprobe and isotopic analysis of small rock fragments representing some of the oldest and youngest periods of lunar magmatism illustrate their usefulness for both fingerprinting distinct episodes of lunar magmatism and reconstructing the evolution of lunar magmatism. Third, mechanisms for primitive planetary mantles degassing and volatile transport on airless bodies can be understood by the analysis of volatile coatings on glass and mineral fragments in the lunar regolith.As many of our insights about the Moon are based on samples that primarily were collected within a limited lunar terrain, our understanding of the Moon is somewhat biased. Future scientifically strategic sampling targets are young mare basalts (Roris basalt in Oceanus Procellarum), far-side mare basalts (Mare Moscoviense), large pyroclastic deposits and potential mantle xenoliths (Aristarchus plateau, Rima Bode) major unsampled crustal lithologies outside the Procellarum KREEP terrane (central peak in Tsiolkovsky crater, South-pole Aitken basin), basin and crater melt sheets (South-pole Aitken basin, Giordano Bruno) and H deposits in permanently shaded areas (South-pole Aitken basin). Sampling these locations would further our understanding of processes at work during the early evolution of the terrestrial planets, provide a comprehensive history of endogenous (e.g., primary volcanic degassing) and exogenous (e.g., solar wind, galactic cosmic rays, volatiles from comets) volatile reservoirs and volatile transport and would provide unique historical information about events and processes that affected the entire inner solar system, a record obscured on the Earth and Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号