首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed monitoring of the groundwater table can provide important data about both short‐ and long‐term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time‐series analysis using Fourier analysis, cross‐correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross‐correlation analysis. We also employed a little‐used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.  相似文献   

2.
3.
Water table temperatures inferred from dissolved noble gas concentrations (noble gas temperatures, NGT) are useful as a quantitative proxy for air temperature change since the last glacial maximum. Despite their importance in paleoclimate research, few studies have investigated the relationship between NGT and actual recharge temperatures in field settings. This study presents dissolved noble gas data from a shallow unconfined aquifer heavily impacted by agriculture. Considering samples unaffected by degassing, NGT calculated from common physically based interpretive gas dissolution models that correct measured noble gas concentrations for "excess air" agreed with measured water table temperatures (WTT). The ability to fit data to multiple interpretive models indicates that model goodness-of-fit does not necessarily mean that the model reflects actual gas dissolution processes. Although NGT are useful in that they reflect WTT, caution is recommended when using these interpretive models. There was no measurable difference in excess air characteristics (amount and degree of fractionation) between two recharge regimes studied (higher flux recharge primarily during spring and summer vs. continuous, low flux recharge). Approximately 20% of samples had dissolved gas concentrations below equilibrium concentration with respect to atmospheric pressure, indicating degassing. Geochemical and dissolved gas data indicate that saturated zone denitrification caused degassing by gas stripping. Modeling indicates that minor degassing (<10% ΔNe) may cause underestimation of ground water recharge temperature by up to 2°C. Such errors are problematic because degassing may not be apparent and degassed samples may be fit by a model with a high degree of certainty.  相似文献   

4.
5.
6.
Salt-Water Upconing in an Aquifer Overlain by a Leaky Confining Bed   总被引:1,自引:0,他引:1  
Louis H. Motz 《Ground water》1992,30(2):192-198
  相似文献   

7.
8.
9.
Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer   总被引:8,自引:0,他引:8  
Inadvertent release of petroleum products such as gasoline into the subsurface can initiate ground water contamination, particularly by the toxic, water-soluble and mobile gasoline components: benzene, toluene and xylenes (BTX). This study was undertaken to examine the processes controlling the rate of movement and the persistence of dissolved BTX in ground water in a shallow, unconfined sand aquifer.
Water containing about 7.6 mg/ L total BTX was introduced below the water table and the migration of contaminants through a sandy aquifer was monitored using a dense sampling network. BTX components migrated slightly slower than the ground water due to sorptive retardation. Essentially all the injected mass of BTX was lost within 434 days due to biodegradation. Rates of mass loss were similar for all monoaromatics; benzene was the only component to persist beyond 270 days. Laboratory biodegradation experiments produced similar rates, even when the initial BTX concentration varied.
A dominant control over BTX biodegradation was the availability of dissolved oxygen. BTX persisted at the field site in layers low in dissolved oxygen. Decreasing mass loss rates over time observed in the field experiment are not likely due to first-order deeradation rates, but rather to the persistence of small fractions of BTX mass in anoxic layers.  相似文献   

10.
11.
This study compares the accuracy of two types of water table maps both of which were constructed with the object of optimizing future mapping efforts in similar environments. The. first type of map is based solely on office information, with no field verification. The second type of map is based on careful field mapping using numerous measurement points.
The office-derived maps were based on topography, surface water features, existing reports, maps and data in the files of the Wisconsin Geological and Natural History Survey; the data were not field-verified. The field-derived maps used a dense network of 236 piezometers at 176 sites in an area of approximately 170 square miles. The field project was much more expensive and labor-intensive than was the construction of office-derived maps for the same area.
The two methods produce water table maps which agree to an appreciable extent, the greatest agreement being in areas having ground water-fed streams. Differences in water table elevations indicated by the two methods range from negligible to approximately 5 feet. Thus, depending upon the availability of existing information, relatively accurate water table elevations can be delineated in similar sandy unconfined aquifers without time-consuming and expensive field work that drilling and piezometer installation entails.
Preliminary construction of office-derived water table maps enables researchers to use their resources efficiently. In some situations, expensive installation of wells and piezometers for a regional monitoring network may add little accuracy to the regional map. For localized problems, collection of additional field data will always be necessary, but can be guided by the office-derived maps. The authors caution that this technique may only be applicable to sandy, unconfined aquifers in humid climates.  相似文献   

12.
13.
14.
We consider two sources of geology‐related uncertainty in making predictions of the steady‐state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined.  相似文献   

15.
The stable isotope ratios of groundwater sulfate (34S/32S, 18O/16O) are often used as tracers to help determine the origin of groundwater or groundwater contaminants. In agricultural watersheds, little is known about how the increased use of sulfur as a soil amendment to optimize crop production is affecting the isotopic composition of groundwater sulfate, especially in shallow aquifers. We investigated the isotopic composition of synthetic agricultural fertilizers and groundwater sulfate in an area of intensive agricultural activity, in Ontario, Canada. Groundwater samples from an unconfined surficial sand aquifer (Lake Algonquin Sand Aquifer) were analyzed from multi-level monitoring wells, riverbank seeps, and private domestic wells. Fertilizers used in the area were analyzed for sulfur/sulfate content and stable isotopic composition (δ18O and/or δ34S). Fertilizers were isotopically distinct from geological sources of groundwater sulfate in the watershed and groundwater sulfate exhibited a wide range of δ34S (−6.9 to +20.0‰) and δ18O (−5.0 to +13.7‰) values. Quantitative apportionment of sulfate sources based on stable isotope data alone was not possible, largely because two of the potential fertilizer sulfate sources had an isotopic composition on the mixing line between two natural geological sources of sulfate in the aquifer. This study demonstrates that, when sulfate isotope analysis is being used as a tracer or co-tracer of the origin of groundwater or of contaminants in groundwater, sulfate derived from synthetic fertilizer needs to be considered as a potential source, especially when other parameters such as nitrate independently indicate fertilizer impacts to groundwater quality.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号