首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in runoff and sediment loads to the Pacific Ocean from 10 major Chinese rivers are presented in this paper To quantitatively assess trends in runoff and sediment loads, a parameter called the "Trend Ratio T" has been defined in this paper. To summarize total runoff and sediment load from these rivers, data from 17 gauging stations for the duration 1955 to 2010 has been standardized, and the missing data have been interpolated by different approaches according to specific conditions. Over the observed 56-year study period, there is a quite stable change in total runoff. Results show that the mean annual runoff flux entering the Pacific Ocean from these rivers is approximately 1,425 billion cubic meters. It is found that all northern rivers within semi-arid and transitional zones including the Songhua, Liaohe, Haihe, Yellow and Huaihe rivers present declining trends in water discharge. Annual runoff in all southern rivers within humid zones including the Yangtze, Qiantang, Minjiang, Pearl and Lancang rivers does not change much, except for the Qiantang River whose annual runoff slightly increases. The annual sediment loads of all rivers show significant declining trends; the exceptions are the Songhua and Lancang rivers whose annual sediment loads have increasing trends. However, the mean annual sediment flux carried into the Pacific Ocean decreased from 2,026 million tonnes to 499 million tonnes over the 56-year period. During this time there were 4 distinct decreasing phases. The decrease in annual sediment flux is due to the integrated effects of human activity and climate change. The reduction in sediment flux makes it easy for reservoir operation; however, the decrease in sediment flux also creates problems, such as channel erosion, river bank collapse and the retreat of the delta area.  相似文献   

2.
Using updated hydrological datasets from three stations, including Cuntan, Yichang and Hankou, covering the period of January 1992–December 2008, the influence of Three Gorges Dam (TGD) on streamflow and sediment load of the Yangtze River was investigated. Results indicated that TGD did not seem to exert a significant influence on streamflow occurring at three stations and changes in streamflow can be mainly attributed to streamflows of tributaries. However, a sharp decrease in the sediment load after the impoundment of TGD was observed. Clear water after the impoundment caused erosion of riverbed and resulted in more sediment at the Hankou station than at the Yichang station. No distinct changes in the annual and monthly maximum sediment loads were observed before and after the impoundment. Therefore, annual and monthly maximum sediment load changes should be subjected mainly to river hydraulics. This study has practical relevance for understanding the influence of large hydraulic structures on the hydrological processes of large rivers.  相似文献   

3.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
《水文科学杂志》2013,58(4):777-792
Abstract

Based on data from five hydrometric stations, Pingshan station on the Jinshajiang River, Gaochang station on the Minjiang River, Wulong station on the Wujiang River, Wusheng station on the Jialingjiang River and Yichang station on the Yangtze River, a study has been made of the temporal variation in grain size of suspended sediment load in the upper Yangtze River. The results show that in the past 40 years, the grain size of the suspended sediment load in the main stem and major tributaries of the upper Yangtze River has had a decreasing trend, that can be explained by the effect of reservoir construction and implementation of soil conservation measures. The reservoirs in the upper Yangtze River Basin, all used for water storage for hydro-electric generation and/or irrigation, have trapped coarse sediment from the drainage area above the dam and, thus, the sediment released now is much finer than before the construction of the reservoirs. The downstream channels are all gravel-bedded or even in bedrock, with little fine sediment, and thus, the released flow can hardly get a supply of fine sediment through eroding the bed. Then, after the downstream adjustment, the grain size of suspended sediment is still fine. Large-scale soil conservation measures have significantly reduced sediment yield in some major sediment source areas. The relatively coarse sediment is trapped and, thus, the sediment delivered to the river becomes finer.  相似文献   

6.
The sediment load of the Yangtze River (China) is decreasing because of construction of dams, of which the Three Gorges Dam (TGD) is the best known example. The rate of the decline in sediment load is well known, but changes in the sediment grain size distribution have not been given much attention. The TGD mostly traps sand and silt while clay is flushed through the reservoir. A large amount of sand is available in the Yangtze River downstream of the reservoir, and therefore the pre-dam sand concentration is not substantially reduced. The availability of silt on the Yangtze River bed is limited, and it is expected that most silt will be removed from the riverbed within one to two decades. In order to evaluate the impact of the change in grain size distribution on the tidal flats of the Yangtze Estuary, a highly schematized tidal flat model is setup. This model broadly reveals that the observed deposition rates are exceptionally large because of the high sediment concentration, the abundance of silt, the seasonal dominance of waves (shaping a concave profile), and the offshore tidal asymmetry. The model further suggests that deposition rates will be limitedly influenced by reductions in clay or fine silt but strongly impacted by reductions in median to coarse silt. The response of the downstream morphology to reservoir sedimentation therefore strongly depends on the type of trapped sediment. As a consequence, silt-dominated rivers, such as the Yangtze River and the Yellow River may be more strongly impacted than sand-dominated systems.  相似文献   

7.
《水文科学杂志》2013,58(1):135-146
Abstract

Based on data from river gauging stations, the multi-year variations in suspended sediment flux (SSF) from China's nine major rivers to the sea were examined. The decadal SSF decreased by 70.2%: from 1.81 Gt/year for 1954–1963 to 0.54 Gt/year for 1996–2005. The decrease in SSF was more dramatic in the arid northern region than in the wet southern region; from north to south, the SSF decreased by 84% in the Yellow River, 42% in the Yangtze River, and 22% in the Pearl River. Dam construction was the principal cause for the decrease in SSF. At present, approximately 2 Gt/year of sediment is trapped in the reservoirs within the nine river basins. Reduced precipitation and increased water extraction and sand mining have also played a role in the decrease in SSF. Although water and sediment conservation programmes have not counteracted the influence of deforestation, they have enhanced the decrease in SSF in recent years. It is concluded that human activity has become a governing factor on riverine sediment delivery to the sea in China.  相似文献   

8.
《国际泥沙研究》2020,35(4):365-376
The Yom River is one of the four major sediment sources to the Chao Phraya River in Thailand. Human activities and changes in climate over the past six decades may have affected the discharge and sediment load to some extent. In the current study, the river discharge and sediment characteristics in the mainstream of the Yom River were investigated using the field observation data from 2011 to 2013 and the historical river flow and sediment data from 1954 to 2014 at six hydrological stations operated by the Royal Irrigation Department of Thailand (RID). The non-parametric Mann-Kendall test and double mass curve were used to analyze the sediment dynamics and temporal changes in the discharge of the Yom River. The results revealed that the sediment was mainly transported in suspension, and the bed-to-suspended sediment loads ratio varied between 0 and 0.05. The daily suspended sediment load (SSL) in the upper and middle basins had a strong correlation with the daily discharge and could be represented by power equations with coefficients of determination higher than 0.8. The daily suspended sediment load in the lower basin did not directly depend on the corresponding discharge because of the reduction in river slope and water diversion by irrigation projects. It also appeared that the river discharges and sediment loads were mainly influenced by climate variation (floods and droughts). Moreover, the average sediment transport of the upper, middle, and lower reaches were 0.57, 0.71, and 0.35 million t/y, respectively. The sediment load in the lower basin decreased more than 50% as a result of changes in the river gradient (from mountainous to floodplain areas). The results from sediment analysis also indicated that the construction of the Mae Yom Barrage, the longest diversion dam in Thailand, and land-use changes did not significantly affect the sediment load along the Yom River.  相似文献   

9.
Monthly sediment load and streamflow series spanning 1963–2004 from four hydrological stations situation in the main stem of the Yangtze River, China, are analysed using scanning t‐test and the simple two‐phase linear regression scheme. Results indicate significant changes in the sediment load and streamflow from the upper reach to the lower reach of the Yangtze River. Relatively consistent positive coherency relations can be detected between streamflow and sediment load in the upper reach and negative coherency in the middle and lower reaches. Interestingly, negative coherency is found mainly for larger time scales. Changes in sediment load are the result mainly of human influence; specifically, the construction of water reservoirs may be the major cause of negative coherency. Accentuating the human influence from the upper to the lower reach results in inconsistent correlations between sediment load and streamflow. Decreasing sediment load being observed in recent years has the potential to alter the topographical properties of the river channel and the consequent development and recession of the Yangtze Delta. Results of this study are of practical significance for river channel management and evaluation of the influence of human activities on the hydrological regimes of large rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Sound understanding of hydrological alterations and the underlying causes means too much for the water resource management in the Pearl River Delta. Incision of river channels plays the key role in the hydrological alterations. As for the causes behind the river channel incision, sand dredging within the river network of the Pearl River Delta is usually assumed to play the overwhelming role in changes of geometric shapes of the river channels. Based on thorough analysis of well-collected data of channel geometry, streamflow, sediment load and water level, this study exposes new findings, investigating possible underlying causes behind the changes of the geometric shapes of the river channels at the Sanshui and Makou station. The results of this study indicate: (1) different changing properties of the geometric shapes are identified at the Sanshui and Makou stations. Larger magnitude of changes can be found in the river channel geometry of the cross section at the Sanshui station when compared to that at the Makou station. Lower water level due to fast riverbed downcutting at the Sanshui station than that at the Makou station is the major reason why the reallocation of streamflow occurred and hence the hydrological alterations over the Pearl River Delta; (2) depletion of sediment load as a result of construction of water reservoirs in the middle and upper Pearl River basin, sand dredging mainly in the Pearl River Delta and heavy floods all contribute much to the incision or deposition of the riverbed. Regulations of erosion and siltation process of the river channel often alleviate the incision of the river channels after a relatively long time span, and which makes it even harder to differentiate the factors causing the river channel incision; (3) the intensifying urbanization in the lower Pearl River basin greatly alters the underlying surface properties, which has the potential to shorten the recession of the flood event and may cause serious scouring processes and this role of flash floods in the incision of the river channels can not be ignored. This study is of great scientific and practical merits in improving human understanding of regulations of river channels and associated consequences with respect to hydrological alterations and water resource management, particularly in the economically booming region of China.  相似文献   

11.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

12.
Wind-blown sand is one of the key factors affecting the evolution of sediment transport,erosion,and deposition in rivers crossing desert areas.However,the differences and complex variations in the spatial and temporal distribution of the underlying surface conditions are seldom considered in research on the river inflow of wind-blown sand over a long time period.The Yellow River contains a large amount of sediment.The Ningxia-Inner Mongolia reach of the Yellow River was selected as the research ...  相似文献   

13.
以三峡工程为核心的梯级水库群联合调度运用显著改变水沙条件,坝下游河段出现长时间、长距离的冲淤调整,长江中下游沙量平衡分析是合理评估水库群修建对河道影响的重要依据,是河湖管理与保护的关键支撑.本文基于长时间序列原型观测资料,采用沙量平衡法分析长江中下游不同时空尺度泥沙沿程恢复特征,对比断面地形法计算结果,结合河道空间区域性特征,从临底悬沙测验误差、断面代表性及断面间距、河道采砂等多角度深入揭示两种方法计算冲淤量产生差异的主要原因.结果表明:(1)2003-2018年宜昌至大通河段冲刷泥沙10.76亿t,其中粒径d<0.125 mm的泥沙冲刷量占比达90.9%.以螺山为界,宜昌至螺山段"粗细均冲",螺山至大通河段则"细冲粗淤";(2)宜昌至大通河段2003-2018年沙量平衡法与断面地形法计算冲淤量相对偏差为71%,从沿程差异分布来看,距离三峡大坝坝址较近的宜昌至沙市河段两方法计算绝对差值较小,而沙市至大通河段差值较大,占宜昌至大通全河段绝对偏差的近86%;(3)宜昌至沙市河段河道采砂量占实测河床冲刷量的比例约为20%,临底悬沙对输沙量的改正比例为13.2%~26.7%(平均约为20%),修正后,沙量平衡法、断面地形法计算结果吻合相对较好;沙市至大通河段泥沙测验、固定断面布设、河道采砂等是导致沙量平衡法与断面地形法出现差异的主要原因.  相似文献   

14.
《国际泥沙研究》2023,38(5):653-661
Studying the characteristics of runoff and sediment processes and revealing the sources of sediment provide key guidance for the scientific formulation of relevant soil erosion protection measures and water conservancy development plans. In the current study, the flow and sediment data of five hydrological stations on the main stream of the Fu River Basin (FRB) from 2007 to 2018 were selected to identify flood events, explore the variation of sediment transport along the FRB, and clarify the sediment sources. The results found that the Jiangyou–Fujiangqiao section is the main source of sediment in the FRB during the flood season. The runoff volume and sediment load during flood events in the Jiangyou–Fujiangqiao section accounted for 35% and 145% respectively of that of Xiaoheba station. These results combined with the change of the sediment load before and after the 2008 Wenchuan Earthquake (May 12) show that the sediment in this section mainly comes from the Fu River tributary–the Tongkou River watershed. The calculation results for the sediment carrying capacity of the Fu River show that the main stream was in a state of erosion in theory. However, according to the calculation results for the interval sediment yield during flood events, the sediment load at the Xiaoheba station was smaller than that at the Shehong station upstream. The analysis indicates that this was not because of sediment deposition in the river channel, but because of sand mining in the river channel and sediment interception by water conservancy projects. If heavy rainfall occurs in the FRB, the sediment accumulated upstream will move downstream with the resulting flood, and the sediment yield in the FRB may further increase. These research conclusions can provide reference information for improving the prediction and management ability of soil and water loss in the FRB and scientific regulation of the Three Gorges Reservoir.  相似文献   

15.
Climate change characterized by increasing temperature is able to affect precipitation regime and thus surface hydrology.However,the manner in which river sediment loads respond to climate change is not well understood,and related assessment regarding the effect of climate change on sediment loads is lacking.We present a quantitative estimate of changes in sediment loads(from 1.5 Gt yr-1 pre-1990 to 0.6 Gt yr-1 from 1991-2007) in response to climate change in eight large Chinese rivers.Over the past decades,precipitation change coupled with rising temperatures has played a significant role in influencing the sediment delivery dynamics,although human activities, such as reservoir construction,water diversion,sand mining and land cover change,are still the predominant forces. Lower precipitation coupled with rising temperatures has significantly reduced sediment loads delivered into the sea in semi-arid climates(4-61%).In contrast,increasingly warmer and wetter climates in subtropical zones has yielded more sediment(0.4-11%),although the increase was offset by human impact.Our results indicate that,compared with mechanical retention by reservoirs,water reduction caused by climate change or human withdrawals has contributed more sediment reduction for the rivers with abundant sediment supply but limited transport capacity(e.g.,the Huanghe).Furthermore,our results indicate that every 1%change in precipitation has resulted in a 1.3%change in water discharge and a 2%change in sediment loads.In addition,every 1%change in water discharge caused by precipitation has led to a 1.6%change in sediment loads,but the same percentage of water discharge change caused largely by humans would only result in a 0.9%change in sediment loads.These figures can be used as a guideline for evaluating the responses of sediment loads to climate change in similar climate zones because future global warming will cause dramatic changes in water and sediment in river basins worldwide at rates previously unseen.  相似文献   

16.
Gender of large river deltas and parasitizing rivers   总被引:1,自引:0,他引:1  
Deltas are the most dynamic part of large rivers and the characteristics of deltas reflect the basic nature of morphodynamics,ecology and anthropogenic influence.The authors investigated many deltas of...  相似文献   

17.
《Continental Shelf Research》2007,27(3-4):296-308
This paper focuses on the delivery of water and sediment to the northern Adriatic to better understand the short-term evolution of continental margin sedimentation under natural and human impact. For that reason, the Po and six Apennine rivers (Metauro, Musone, Potenza, Tronto, Chienti and Pescara) are investigated. The climate-driven hydrological model HydroTrend is used to simulate discharge and sediment loads where observational data are limited. The northern Apennine hinterland has a significant impact on the sediment flux leaving the Po River, contributing 56% of the sediment it delivers to the Adriatic Sea. The Po River experienced a strong decrease in its sediment load (17.2–6.4 Mt/yr) across 1933–1987, in contrast to a small increase in its water discharge. The rivers draining the southern Apennine hinterland contribute more than 50% of the sediment load entering the Adriatic Sea, and this is in spite of human modification of their discharge through numerous small reservoirs that invariably reduce a river's sediment load. As a result, hyperpycnal flows, which historically carried 20–40% of the sediment flux from these Apennine rivers, become rare. Sediment load reduction is also reflected by retreat of the Apennine coastline. Based on the ART model (used in HydroTrend), the total sediment load to the northern Adriatic is 43 MT/yr where the northern Alpine rivers contribute 8 MT/yr, the Po River 13 MT/yr and the Apennine rivers contribute 22 MT/yr.  相似文献   

18.
Sediment load reduction in Chinese rivers   总被引:18,自引:9,他引:9  
In this paper, the changes in the annual runoff and sediment transport have been assessed by using the long term observation data from 10 gauging stations on 10 large rivers across China from far north to far south. It is found that the annual sediment yield has generally had a decreasing trend in the past half century. According to the changes in annual runoff and the sediment yield per area, rivers in China can be classified into the following three groups: 1) rivers with decreasing annual sediment transport and stable runoff; 2) rivers with both decreasing annual sediment transport and runoff and 3) rivers with greatly reduced annual sediment transport and decreasing annual runoff. The results indicate that, in all southern rivers (to the south of the Huaihe River including the Huaihe River), there has been little change in average annual runoff but a dramatic decrease in annual sediment transport. In the northern rivers, however, both the annual sediment yield and the runoff show significant evidence of reduction. To further investigate the recent changes in annual runoff and sediment transport, the short-term observation data from these 10 gauging stations in the recent 10 years have been assessed. Results show that both the annual sediment transport and the runoff have decreased" significantly in the northern rivers in the past 10 years. Using the Yellow River at the Lijin Station as an example, the average annual runoff for the last 10 years is only 1/3 of the long term average value and the average annual sediment yield of the last 10 years is only 1/4 of the long term average value. More unusually, in the Yongding River the annual sediment yield has approached zero and the runoff has decreased significantly. In addition, the impacts of human activities on the changes in both runoff and sediment transport have been discussed.  相似文献   

19.
《水文科学杂志》2013,58(2):457-465
Abstract

Periodicity of the runoff and the sediment load, and possible impacts from human activities and climatic changes, in the Yangtze River basin during 1963–2004 are discussed based on the monthly sediment and runoff data, and using the wavelet approach. Research results indicated that: (a) Sediment load changes are severely impacted by the different types of human activity (e.g. construction of water reservoirs, deforestation/afforestation); and the runoff variability is the direct result of climatic changes, e.g. the precipitation changes. (b) The impacts of human activity and climatic changes on the sediment load and runoff changes are greater in smaller river basins (e.g. the Jialingjiang River basin) than in larger river basins. The response of sediment load and runoff changes to the impacts of human activities and climatic changes are prompt and prominent in the Jialingjiang River basin relative to those in the mainstem of the Yangtze River basin. (c) Construction of the Three Gorges Dam has already had obvious impacts on the sediment transport process in the middle and lower Yangtze River basin, but shows no obvious influence on the runoff changes. Construction of the Three Gorges Dam will result in further re-adjustment of the scouring/filling process within the river channel in the middle and lower Yangtze River basin, and have corresponding effects on the altered sediment load because of the Dam's operation for the river channel, ecology, sustainable social economy and even the development of the Yangtze Delta. This will be of concern to local governments and policy makers.  相似文献   

20.
To investigate the effects of anthropogenic activity, namely, land use change and reservoir construction, on particulate organic carbon (POC) transport, we collected monthly water samples during September 2007 to August 2009 from the Longchuanjiang River to understand seasonal variations in the concentrations of organic carbon species and their sources and the yield of organic and inorganic carbon from the catchment in the Upper Yangtze basin. The contents of riverine POC, total organic carbon and total suspended sediment (TSS) changed synchronously with water discharge, whereas the contents of dissolved organic carbon had a small variation. The POC concentration in the suspended sediment decreased non‐linearly with increasing TSS concentration. Higher molar C/N ratio of particulate organic matter (average 77) revealed that POC was dominated by terrestrially derived organic matter in the high flows and urban wastewaters in the low flows. The TSS transported by this river was 2.7 × 105 t/yr in 2008. The specific fluxes of total organic carbon and dissolved inorganic carbon (DIC) were 5.6 and 6 t/km2/yr, respectively, with more than 90% in the high flow period. A high carbon yield in the catchment of the upper Yangtze was due to human‐induced land use alterations and urban wastes. Consistent with most rivers in the monsoon climate regions, the dissolved organic carbon–POC ratio of the export flux was low (0.41). Twenty‐two percent (0.9 t/km2/yr) of POC out of 4 t/km2/yr was from autochthonous production and 78% (3.1 t/km2/yr) from allochthonous production. The annual sediment load and hence the organic carbon flux have been affected by environmental alterations of physical, chemical and hydrological conditions in the past 50 years, demonstrating the impacts of human disturbances on the global and local carbon cycling. Finally, we addressed that organic carbon flux should be reassessed using adequate samples (i.e. at least two times in low‐flow month, four times in high‐flow month and one time per day during the flood period), daily water discharge and sediment loads and appropriate estimate method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号