首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Rutile, as an important component in alluvial or eluvial heavy mineral deposits, is known in southern Cameroon. These deposits are underlain by the Neoproterozoic low- to high-grade Yaoundé Group. Geochemical, thermometric, fluid inclusion and Pb isotopic studies of the rutile from alluvial and eluvial concentrates and from medium-grade micaschist from the nearby Yaoundé region permit the following conclusions: (1) alluvial and eluvial rutile of the Yaoundé region are derived from the degradation of metapelites, metamafic rocks and pegmatites of the nearby Yaoundé Group; (2) rutile in the Yaoundé Group formed during the Pan-African metamorphism, or was inherited as detrital rutile from a 900 Ma source. The study also shows that the rutile can be used to trace the history of the Pan-African belt north of the Congo craton.  相似文献   

2.
Ion microprobe U–Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700–665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100–950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa–Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west–central Africa.  相似文献   

3.
The Yaoundé belt (Cameroon) and the Sergipano belt (NE Brazil) belonged to a major and continuous Neoproterozoic orogen at the northern margin of the ancient Congo-São Francisco craton. The Yaoundé belt comprises schists, quartzites, gneisses and migmatitic gneisses grouped into three domains; the low-grade Mbalmayo Group in south and the medium- to high-grade Yaoundé and Bafia Group in north. The Sergipano belt is divided into six domains, the three southernmost of which are mostly made up of clastic and chemical metasedimentary rocks whereas the others are more diverse with a migmatite–gneiss complex, and two metavolcanicplutonic complexes. In general, the two belts show structural vergence and decrease of metamorphic grade towards the craton; three main deformation phases are recognized in the Sergipano belt in contrast with two described in the Yaoundé belt. The minimum age of Pan-African-Brasiliano collision in the Sergipano belt is constrained at 628 ± 12 Ma on syn-collision granites, whereas in the Yaoundé belt collision took place between 620 and 610 Ma, i.e. the age of granulite facies metamorphism. Sm–Nd isotope geochemistry and U–Pb age dating indicate that most clastic metasedimentary rocks in both belts were derived from sources to the north and, to a lesser degree, from the cratons to the south.  相似文献   

4.
The talcschists of the Boumnyebel area (southern Cameroon) form ≤ 30 m thick discontinuous layers within a Pan-African nappe unit (Yaoundé group), which includes, at the base, muscovite + biotite ± garnet micaschists associated with amphibolites and pyroxenites, and, at the top, muscovite + biotite + garnet + kyanite micaschists locally associated with marble and amphibolites. The metamorphic peak (∼650 °C/9.5 kbar; ca. 620 Ma) postdates nappe emplacement. Isograds are in normal position, micaschists passing downwards to migmatites in the northwestern part of the area studied. The rock types in the lower part of this nappe suggest active margin environments with detrital input from a nearby continental crust (arc or back-arc context).  相似文献   

5.
The Mayo Kebbi region in SW Chad is part of the NNE-SSW trending Neoproterozoic Central African Fold Belt (CAFB) and is made up of three calc-alkaline granitoid suites emplaced into a metavolcanic–metasedimentary sequence. The first suite is represented by mafic to intermediate rocks (gabbro-diorite and metadiorite) emplaced between 737 and 723 Ma during early Pan-African convergence. The second consists of the Mayo Kebbi batholith and includes tonalites, trondhjemites and granodiorites, emplaced during several magmatic pulses between 665 and 640 Ma. The third suite includes porphyritic granodiorite and hypersthene monzodiorite dated at ca. 570 Ma. The Mayo Kebbi domain extends southward into Cameroon and is interpreted as a middle Neoproterozoic arc stabilized at ca. 650 Ma. This study also revealed a diachronous evolution between Mayo Kebbi and western Cameroon (e.g., the Poli region). The overall evolution of this part of the CAFB is interpreted as the result of successive development of magmatic arcs, since ca. 740 Ma, and tectonic collage of three different domains (Adamawa-Yade, Mayo Kebbi, and West Cameroon) which, after suturing, were intruded by post-collisional granitoids (<600 Ma).  相似文献   

6.
U–Pb (TIMS–ID and SIMS) and Sm–Nd analyses of zircons and garnet-whole rock pairs were applied on high-pressure granulite facies metapelites and metagranodiorite from Tcholliré and Banyo regions, respectively in the Adamawa–Yadé and Western Domains of the Central-African Fold Belt (CAFB) of Cameroon. Cathodoluminescence (CL) images of zircons reveal that they are made up of ubiquitous magmatitic xenocrystic cores, surrounded and/or overprinted by light unzoned recrystallized domains. U–Pb data on cores yield ages ranging from Paleoproterozoic to Neoproterozoic, which we consider as dating inheritances. Data on overgrowths and recrystallized domains give ages ranging between 594 and 604 Ma, interpreted as the time of HP granulite-facies metamorphism in the Tcholliré and Banyo regions. This is also supported by ages derived from Sm–Nd garnet-whole rock pairs. Sediments of the Tcholliré region were deposited after ca. 620 Ma from Paleoproterozoic, Mesoproteroszoic and Neoproterozoic protoliths, while those from the Banyo region were deposited after 617.6 ± 7.1 Ma essentially from Neoproterozoic protoliths.  相似文献   

7.
The Scandinavian Caledonides comprise nappe stacks of far-travelled allochthons that record closure of the Iapetus Ocean and subsequent continental collision of Baltica and Laurentia. The Seve Nappe Complex (SNC) of the Scandinavian Caledonides includes relics of the outermost Baltoscandian passive margin that were subducted to mantle depths. The earliest of the deep subduction events has been dated to ca. 500–480 Ma. Evidence of this event has been reported from the northern exposures of the SNC. Farther south in the central and southern segments of the SNC, (ultra)high-pressure rocks have yielded younger ages in the range of ca. 470–440 Ma.This study provides the first record of the early Caledonian event in the southern SNC. The evidence has been obtained by depth profiling of zircon grains that were extracted from the Tväråklumparna microdiamond-bearing gneiss. These zircon grains preserve eclogite facies overgrowths that crystallized at 482.6 ± 3.8 Ma. A second, chemically-distinct zircon overgrowth records granulite facies metamorphism at 439.3 ± 3.6 Ma, which corroborates previous geochronological evidence for granulite facies metamorphism at this time. Based on these results, we propose that the entire outer margin of Baltica was subducted in the late Cambrian to early Ordovician, but the record of this event may be almost entirely eradicated in the vast majority of lithologies by pervasive late Ordovician to early Silurian metamorphism.  相似文献   

8.
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U–Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana.Ages of detrital zircons (by ID–TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean–Paleoproterozoic ages (3.4–3.3, 3.1–2.7, and 2.5–2.4 Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3–1.9 Ga, with a peak at ca. 2.15 Ga) and to the ca. 1.75 Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2 Ga, with a peak at 1.3 Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0 Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9 Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin.Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6–1.2 Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt.Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630 Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605 Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt.Whilst continent–continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634–599 Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595–560 Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588 Ma, as indicated by monazite age.The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545–500 Ma in the Paraguay belt and ca. 500 Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50–100 million years.  相似文献   

9.
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) – Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48–40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40–30 Ma in the Tso Morari dome (northern section of the transect) and by 30–20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene.High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10 km) between 20 and 6 Ma, while its southern front reached this depth at 10–5 Ma.  相似文献   

10.
SHRIMP U–Pb zircon dating of gabbro, anorthosite, trondhjemite and granodiorite from the Jinshajiang ophiolitic mélange of southwestern China provides geochronological constraints on the evolution of Paleo-Tethys. The ophiolitic mélange is exposed for about 130 km along the Jinshajiang River where numerous blocks of serpentinite, ultramafic cumulate, gabbro, sheeted dikes, pillow lavas and radiolarian chert are set in a greenschist matrix. A cumulate gabbro-anorthosite association and an amphibole gabbro have ages of 338 ± 6 Ma, 329 ± 7 Ma and 320 ± 10 Ma, respectively, which constrain the time of formation of oceanic crust. An ophiolitic isotropic gabbro dated at 282–285 Ma has the same age as a trondhjemite vein (285 ± 6 Ma) cutting the gabbro. These ages probably reflect a late phase of sea-floor spreading above an intra-oceanic subduction zone. At the southern end of the Jinshajiang belt, a granitoid batholith (268 ± 6 Ma), a gabbro massif (264 ± 4 Ma), and a granodiorite (adakite) intrusion (263 ± 6 Ma) in the ophiolitic mélange constitute a Permian intra-oceanic plutonic arc complex. A trondhjemite dike intruded serpentinite in the mélange at 238 ± 10 Ma and postdates the arc evolution of the Jinshajiang segment of Paleo-Tethys.  相似文献   

11.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

12.
《Gondwana Research》2009,15(4):624-643
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

13.
Magmatic rocks from the pre-Mesozoic basements of the Sambuco and Maggia nappes have been dated by U–Pb zircon ages with the LA-ICPMS technique. Several magmatic events have been identified in the Sambuco nappe. The mafic banded calc-alkaline suite of Scheggia is dated at 540 Ma, an age comparable to that of mafic rocks in the Austroalpine Silvretta nappe. The Sasso Nero peraluminous augengneiss has an age of 480–470 Ma, like many other “older orthogneisses” in Alpine basement units. It hosts a large proportion of inherited zircons, which were dated around 630 Ma, a Panafrican age indicating the Gondwanan affiliation of the Sambuco basement. The calc-alkaline Matorello pluton yielded ages around 300 Ma, similar to numerous Late Carboniferous intrusions in other basement units of the Lower Penninic (Monte Leone, Antigorio, Verampio) and Helvetic domains (Gotthard and other External Crystalline Massifs). Associated lamprophyric dykes are slightly younger (300–290 Ma), like similar dykes sampled in gneiss blocks included in the sedimentary cover of the underlying Antigorio nappe (290–285 Ma). The Cocco granodiorite and Rüscada leucogranite, both intruding the basement of the neighbouring Maggia nappe, yielded ages of ca. 300–310 Ma, identical within errors to the age of the Matorello pluton. They are significantly older than former age determinations. This age coincidence, coupled with remarkable petrologic similarities between the Cocco and Matorello granodiorites, strongly suggests paleogeographic proximity of the Sambuco and Maggia nappes in Late Carboniferous times. In recent publications these two nappes have been interpreted as belonging to distinct Mesozoic paleogeographic domains: “European” for Sambuco and “Briançonnais” for Maggia, separated by the “Valais” oceanic basin. In this case, the similarity of the Matorello and Cocco intrusions would demonstrate the absence of any significant transcurrent movement between these two continental domains. Alternatively, according to a more traditional view, Sambuco and Maggia might belong to a single large Alpine tectonic unit.  相似文献   

14.
Archean terrains of the Quadrilátero Ferrífero comprise a greenstone belt association surrounded by granitoid–gneiss complexes, mainly composed of banded TTG gneisses whose igneous protoliths are older than 2900 Ma. This early continental crust was affected by three granitic magmatic episodes during the Neoarchean: ca. 2780 to 2760 Ma; 2720 to 2700 Ma; and 2600 Ma. Dating of felsic volcanic and volcaniclastic rocks defines a felsic magmatic event within the greenstone belt association around 2772 Ma, contemporaneous with emplacement of several of the granitic plutons and constrains a major magmatic and tectonic event in the Quadrilátero Ferrífero. Lead isotopic studies of lode–gold deposits indicate that the main mineralization episode occurred at about 2800 to 2700 Ma.Proterozoic evolution of the Quadrilátero Ferrífero comprises deposition of a continental-margin succession hosting thick, Lake Superior-type banded iron formations, at ca. 2500 to 2400 Ma, followed by deposition of syn-orogenic successions after 2120 Ma. The latter is related to the Transamazonian Orogeny. The western part of the Quadrilátero Ferrífero was also affected by the Brasiliano Orogeny (600 to 560 Ma).  相似文献   

15.
Paleoproterozoic orogenic pulses associated magmatism and metamorphism provide important constraints on the assembly of Columbia. New zircon UPb ages and whole-rock geochemistry results are reported from the Tarim craton, an externally positioned landmass within the Columbia supercontinent. Two samples of low-grade metagranites collected from borehole samples yielded crystallization ages of 1851 ± 9 Ma and 1850.4 ± 9.1 Ma. High-grade metamorphosed granites yielded discordia with upper intercept ages of 1822 ± 52 Ma and 1843 ± 58 Ma, and amphibolitic rocks yielded a concordant age of 1915 ± 30 Ma from the outcrops in southwestern Tarim. Together with previously published data, we propose the following sequence of events in Tarim. Magmatism in the Tarim craton took place during two narrow time intervals. The first phase of magmatism occurred between 1.96 and 1.90 Ga and was followed by a slightly younger magmatic pulse between 1.86 and 1.80 Ga. The latter intrusive phase was followed immediately by ca. 1.8 Ga metamorphism, which is widespread throughout the Tarim craton. We are unable to discriminate any regional age differences between the northern and southern regions of the Tarim Craton. Elemental and zircon Hf isotopes suggest that the magmatic sources were mainly derived from partial melting of the Paleoproterozoic-Neoarchean reworked crust, while variable mantle-derived magma involved in the earliest 1.96–1.90 Ga igneous rocks. The earliest magmatic phase is geodynamically related to subduction setting, whereas the younger phase (1.86–1.80) formed in a continental collisional setting. This process suggests an orogeny at ca. 1.96–1.90 Ga with the amalgamation between the southern and northern terranes, and a collisional orogeny between 1.86 and 1.80 Ga as Tarim becomes a peripheral part of the Columbia supercontinent. The two stages of orogenic activities argue for the amalgamation of the Tarim craton followed by the assembly of Columbia.  相似文献   

16.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

17.
New K–Ar and 40Ar/39Ar data of tholeiitic and alkaline dike swarms from the onshore basement of the Santos Basin (SE Brazil) reveal Mesozoic and Tertiary magmatic pulses. The tholeiitic rocks (basalt, dolerite, and microgabbro) display high TiO2 contents (average 3.65 wt%) and comprise two magmatic groups. The NW-oriented samples of Group A have (La/Yb)N ratios between 15 and 32.3 and range in age from 192.9±2.2 to 160.9±1.9 Ma. The NNW-NNE Group B samples, with (La/Yb)N ratios between 7 and 16, range from 148.3±3 to 133.9±0.5 Ma. The alkaline rocks (syenite, trachyte, phonolite, alkaline basalts, and lamprophyre) display intermediate–K contents and comprise dikes, plugs, and stocks. Ages of approximately 82 Ma were obtained for the lamprophyre dikes, 70 Ma for the syenite plutons, and 64–59 Ma for felsic dikes. Because Jurassic–Early Cretaceous basic dikes have not been reported in SE Brazil, we might speculate that, during the emplacement of Group A dikes, extensional stresses were active in the region before the opening of the south Atlantic Ocean and coeval with the Karoo magmatism described in South Africa. Group B dikes yield ages compatible with those obtained for Serra Geral and Ponta Grossa magmatism in the Paraná Basin and are directly related to the breakup of western Gondwana. Alkaline magmatism is associated with several tectonic episodes that postdate the opening of the Atlantic Ocean and related to the upwelling of the Trindade plume and the generation of Tertiary basins southeast of Brazil. In the studied region, alkaline magmatism can be subdivided in two episodes: the first one represented by lamprophyre dykes of approximately 82 Ma and the second comprised of felsic alkaline stocks of approximately 70 Ma and associated dikes ranging from 64 to 59 Ma.

Resumo

Novos dados K–Ar e 40Ar/39Ar de enxames de diques toleíticos e alcalinos localizados no embasamento onshore da Bacia de Santos (SE Brasil) apontam para diferentes pulsos magmáticos ocorridos entre o Jurássico e o Terciário. Os diques de rochas toleíticas (basalto, diabásio e microgabro), são mais velhos, exibem altos teores de TiO2 (3,65% peso na média) e podem ser subdivididos em dois grupos magmáticos. O Grupo A aflora a norte da Bacia de Resende, compreende diques orientados na direção NW, com razões (La/Yb)N entre 15 e 32,3, e idades entre 192.9±2.2 e 160.9±1.9 Ma. O Grupo B aflora a sul e a leste da Bacia de Resende, engloba diques orientados na direção NNW e NNE, com razões (La/Yb)N entre 7 e 16, e idades obtidas entre 148.3±3 e 133.9±0.5 Ma. As rochas alcalinas (sienito, traquito, fonolito, basalto alcalino e lamprófiro) possuem teores médios de K, e afloram como diques, plugs e stocks.. As idades obtidas são de ca. 82 Ma para os diques lamprofíricos, de ca. 70 Ma para os plugs sieníticos, e entre 64 e 59 Ma para os diques félsicos. Como estas idades Jurássicas para diques toleíticos ainda não foram descritas para a região sudeste do Brasil, pode-se especular que durante o emplacement dos diques do GrupoA o cenário tectônico indicaria esforços extensionais anteriores à abertura do Oceano atlântico Sul, e contemporânea ao derrame basáltico do Karoo na África do Sul. Já os diques do Grupo B são contemporâneos ao magmatismo Serra Geral e ao enxame de diques de Ponta Grossa, e portanto este episódio está diretamente relacionado à separação entre o Brasil e África no Cretáceo. O magmatismo alcalino está associado a diversos episódios tectônicos que sucedem à abertura do Oceano Atlântico Sul e que resultaram no desenvolvimento das Bacias terciárias do sudeste brasileiro. Está provavelmente relacionado à chegada da Pluma de Trindade e as idades obtidas para a região em estudo indicam que o magmatismo lamprofírico é mais antigo (ca. 82 Ma), seguido pelos plútons sieníticos (ca. 70 Ma) e diques associados (64 a 59 Ma.)  相似文献   

18.
U–Pb single zircon crystallization ages were determined using TIMS and sensitive high resolution ion microprobe (SHRIMP) on samples of granitoid rocks exposed in the Serrinha nucleus granite–greenstone terrane, in NE Brazil. Our data show that the granitoid plutons can be divided into three distinct groups. Group 1 consists of Mesoarchaean (3.2–2.9 Ga) gneisses and N-S elongated TTG (Tonalite-Trondhjemite-Granodiorite) plutons with gneissic borders. Group 2 is represented by ca. 2.15 Ga pretectonic calc-alkaline plutons that are less deformed than group 1. Group 3 is ca. 2.11–2.07 Ga, late to post-tectonic plutons (shoshonite, syenite, K-rich granite and lamprophyre). Groups 2 and 3 are associated with the Transamazonian orogeny. Xenocryst ages of 3.6 Ga, the oldest zircon yet recorded within the São Francisco craton, are found in the group 3 Euclides shoshonite within the Uauá complex and in the group 2 Quijingue trondhjemite, indicating the presence of Paleoarchaean sialic basement.Group 1 gneiss-migmatitic rocks (ca. 3200 Ma) of the Uauá complex constitute the oldest known unit. Shortly afterwards, partial melting of mafic material produced a medium-K calc-alkaline melt, the younger Santa Luz complex (ca. 3100 Ma) to the south. Subsequent TTG melts intruded in different phases now exposed as N-S elongated plutons such as Ambrósio (3162 ± 26 Ma), Araci (3072 ± 2 Ma), Requeijão (2989 ± 11 Ma) and others, which together form a major part of the Archaean nucleus. Some of these plutons have what appear to be intrusive, but are probably remobilized, contacts with the Transamazonian Itapicuru greenstone belt. The older gneissic rocks occur as enclaves within younger Archaean plutons. Thus, serial additions of juvenile material over a period of several hundred m.y. led to the formation of a stable micro-continent by 2.9 Ga. Evidence for Neoarchaean activity is found in the inheritance pattern of only one sample, the group 2 Euclides pluton.Group 2 granitoid plutons were emplaced at 2.16–2.13 Ga in a continental arc environment floored by Mesoarchaean crust. These plutons were subsequently deformed and intruded by late to post-tectonic group 3 alkaline plutons. This period of Transamazonian orogeny can be explained as a consequence of ocean closure followed by collision and slab break-off. The only subsequent magmatism was kimberlitic, probably emplaced during the Neoproterozoic Braziliano event, which sampled older zircon from the basement.  相似文献   

19.
The Jiaodong Peninsula is a key region for researching the interaction between the North and South China Plates. Tectonic relationships between collision, exhumation of ultra-high-pressure (UHP) slabs, strike-slip faulting and gold mineralization, are still ambiguous. The eastern part of the Jiaodong Peninsula (Eastern Jiaodong), which includes Triassic intrusions and is less affected by the Tan-Lu Fault Zone, is a key area to examine exhumation dynamics in detail. Systematic field mapping and zircon U–Pb dating of Triassic intrusions establishes that: (1) The UHP wedge in the eastern part of the Jiaodong Peninsula can be divided into the lateral and frontal ramps of a thrust and nappe system. Dating of samples from Donglinghou (244.7 ± 4.2 Ma) and Qingyutan (233.8 ± 8.1 Ma) areas indicates that the collision happened at or before the Middle Triassic. (2) Postcollisional extension intrusions including the Shidao granitoid (216.2 ± 2.4 Ma), and the Chengshantou granitoid (cut by a dolerite dyke dated at 210.5 ± 1.0 Ma), generally strike NE and occurred in a metamorphic core complex below the Upper Jiashan-Xiangshui detachment (U-JSXS). (3) Regional faults in the Jiaodong Peninsula exploited syncollisional foliations of the UHP wedge, which resulted in faults dipping towards the NW and SE. The reactivation of the Lower Jiashan-Xiangshui shear zone (L-JSXS) and its overprinting upon the Tan-Lu fault system may have caused another major episode of exhumation of the syncollisional wedge, and could have been responsible for an extensional environment that favored gold mineralization.  相似文献   

20.
Eclogite is a high-pressure (HP) metamorphic rock that provides important information about the subduction of both continental and oceanic crusts. In this study we present SHRIMP zircon U–Pb isotopic data for a suite of the basement gneisses to investigate the origin of the Proterozoic Bibong eclogite in the Hongseong area, South Korea. Zircon grains from the basement felsic gneisses yielded Paleoproterozoic protolith ages ranging from ca. 2197 to 1880 Ma, and were intruded by syenite at ca. 750 Ma. A HP regional metamorphic event of Triassic age (ca. 255–227 Ma) is recorded in the zircon rims of the country rocks, which is also observed in the zircons from the eclogite. The contacts between the Bibong eclogite and its host rocks support an origin for the Proterozoic protoliths, indicating continental intrusions. The Hongseong area thus preserves evidence for the Triassic collision, indicating a tectonic linkage among the northeast Asian continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号