首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The problem of the detailed structure of magnetogasdynamic shock waves is investigated. It is assumed that the flow takes place under normal magnetic fieldH 0 and the conductivity of the medium is considered infinite. An approximate analytical solution of the nonlinear differential equations describing the phenomena is obtained. The suggested analytical results in this paper are in good agreement with the previous numerical computations for the thickness and the velocity distribution inside the transition region. In addition, the enthalpy distribution inside the shock front is predicted.  相似文献   

2.
Loukas Vlahos 《Solar physics》1989,121(1-2):431-447
Particle acceleration during solar flares is a complex process where the main actors (Direct (D.C.) or turbulent electric fields) are hidden from us. It is easy to construct a successful particle accelertion model if we are allowed to impose on the flaring region arbitrary conditions (e.g., strength and scale length of the D.C. or turbulent electric fields), but then we have not solved the acceleration problem; we have simply re-defined it. We outline in this review three recent observations which indicate that the following physical processes may happen during solar flares: (1) Release of energy in a large number of microflares; (2) short time-scales; (3) small length scales; and (4) coherent radiation and acceleration sources. We propose that these new findings force us to reformulate the acceleration process inside a flaring active region assuming that a large number of reconnection sites will burst almost simultaneously. All the well-known acceleration mechanisms (electric fields, turbulent fields, shock waves, etc.) reviewed briefly here, can be used in a statistical model where each particle is gaining energy through its interaction with many small reconnection sites.  相似文献   

3.
Strong cylindrical magnetogasdynamic shock waves in rotating interplanetary medium has been studied and an analytic solution for their propagation has been obtained. Using characteristic method and considering the effect of Coriolis force, we have shown that magnetic field has significant effect on the velocity of the shock wave.  相似文献   

4.
We have studied a new solution of charged gravastars with isotropic matter configuration in the framework of f(R, T) theory of gravity. For this purpose, we have assumed the electric charge as a constant. This stellar structure divided into three different regions: The preliminary part shows the interior charged region in which pressure equals to the negative density, second is the intermediate charged shell which is assumed to be very thin and filled with ultrarelativistic stiff fluid and the last corresponds to the electrovacuum region which is defined by an exterior Reissner-Nordström solution. Under these assumptions, we have found some physical aspects like length, energy, entropy and equation of state for charged spherical gravastar distribution. Moreover, we present an exact solution that free from event horizon and non-singular for this our new model.  相似文献   

5.
The termination shock at the heliospheric boundary is simulated in terms of a two-layer turbulent medium for which the average radial component of solar wind velocity is nonzero inside the heliosphere and zero for external magnetic inhomogeneities. Galactic cosmic rays (GCRs) are scattered more strongly in the solar wind than in the interstellar medium. A boundary value problem for density is defined to describe GCR propagation in the given two-layer medium. The exact analytical solution of it is derived. The phase density and GCR fluxes in the whole range of the particle energies, as well as the degree of anisotropy of high-energy GCRs, are determined. The qualitative agreement of theoretical calculations and observed GCR distributions is obtained. In particular, in the region near the termination shock, an increase in the high-energy particle density and a decrease in the low-energy particle density are observed.  相似文献   

6.
Non-similarity solutions are obtained for one-dimensional isothermal and adiabatic flow behind strong cylindrical shock wave propagation in a rotational axisymmetric dusty gas,which has a variable azimuthal and axial fluid velocity.The dusty gas is assumed to be a mixture of small solid particles and perfect gas.The equilibrium flow conditions are assumed to be maintained,and the density of the mixture is assumed to be varying and obeying an exponential law.The fluid velocities in the ambient medium are assumed to obey exponential laws.The shock wave moves with variable velocity.The effects of variation of the mass concentration of solid particles in the mixture,and the ratio of the density of solid particles to the initial density of the gas on the flow variables in the region behind the shock are investigated at given times.Also,a comparison between the solutions in the cases of isothermal and adiabatic flows is made.  相似文献   

7.
Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.  相似文献   

8.
V. M. Bardakov 《Solar physics》1986,106(1):147-164
The existing models for solar flares fail to treat in an appropriate manner the energy release mechanisms based on a step-like transformation of the magnetic field energy from magnetic field to energy of the hydrodynamical motion of the medium and dissipation of these motions through shock waves into heat.In considering an example of the relaxation process in a topologically non-equilibrium magnetohydrodynamical system resulting from the merging of two magnetic loops that possess balanced longitudinal currents, this paper suggests one such energy release mechanism. Due to a certain degree of universality for different topologically non-equilibrium systems, a variety of characteristics of the relaxation process obtained may form the basis for constructing a model of solar flares based on a step-like transformation of the magnetic field energy in topologically non-equilibrium magnetohydrodynamical systems.  相似文献   

9.
In this paper we propose to review the fundamental aspects of turbulence theories and their relevance to particle distribution functions observed by the cluster satellites in the quasi-perpendicular shock. The paper focusses on the hierarchical model describing the different levels of plasma turbulence; from the linear theory, through the quasi-linear remedy, to strong turbulence theories in the context of the earth's bow shock. We will discuss very briefly the validity of these approximations, and their relevance as far as satellite observations are concerned. In particular, we will discuss the development of non-Gaussian features in the ion distribution functions through the evaluation of higher order moments such as the kurtosis or flatness and the skewness. We have found that the profile of the kurtosis versus skewness tends to collapse to a parabolic line. This in turn allows us to draw analogies with neutral fluid turbulence where such a collapse of the kurtosis-skewness profile has been observed.  相似文献   

10.
The problem of shock wave propagation in a heat-conducting and self-gravitating medium has been studied. The shock is strong enough so that the ambient gas pressure can be neglected. The variation of velocity, density, temperature, and mass distributions behind the shock have been obtained from a numerical solution of similarity equations involved.  相似文献   

11.
A wide variety of objects in the universe drive supersonic outflows through the interstellar medium which is often highly clumpy. These inhomogeneities affect the morphology of the shocks that are generated. The hydrodynamics are difficult to model as the problem is inherently 3D and the clumps are subject to a variety of fluid instabilities as they are accelerated and destroyed by the shock. Over the last two years, we have been carrying out experiments at the University of Rochester’s Omega laser to address the interaction of a dense-plasma jet with a localised density perturbation. More recently, we have turned our attention to the interaction of a shock wave with a spherical particle. We use a 1.6-mm diameter, 1.2-mm length Omega hohlraum to drive a composite plastic ablator (which includes bromine to prevent M-band radiation from preheating the experiment). The ablator acts as a “piston” driving a shock into 0.3 g?cm?3 foam containing a 0.5-mm diameter sapphire sphere. We radiograph along two orthogonal lines of sight, using nickel or zinc pinhole-apertured X-ray backlighters, to study the subsequent hydrodynamics. We present initial experimental results and two-dimensional simulations of the experiment.  相似文献   

12.
The shock wave produced by a point source has been studied in a heat-conducting gas medium. The shock is assumed to be strong enough to neglect the ambient gas pressure and the similarity method is used. The distribution of flow quantities behind the shock have been obtained by the numerical integration of a system of ordinary differential equations using the boundary conditions at the shock wave.  相似文献   

13.
The partially ionized local interstellar medium, before interacting with the heliospheric plasma on the upwind side, most probably undergoes an outer bow shock. After conversion into a sub-magnetosonic plasma flow, it then passes around the heliopause. While the ionized component at the bow shock undergoes abrupt changes of its dynamical properties, the neutral component first continues to flow downstream of the shock with its unperturbed properties. Consequently, the two fluids immediately after the bow shock passage are out of dynamical and thermodynamical equilibrium. Neutral atoms move with a higher bulk velocity and are cooler than the ions. Due to intensive local charge-exchange couplings between neutral atoms and protons these different properties tend to mix each other via momentum and energy exchanges. It turns out that the charge exchange period is shorter than the relaxation period. Hence the distribution functions cannot relax rapidly enough to their highest-entropy forms, i.e. shifted Maxwellians. Here we study the transport processes of newly injected ions in velocity space considering their quasi-linear and non-linear interactions with the ambient MHD turbulence in the plasma interface region. For that purpose we study the turbulence levels in the helio-sheath plasma region. We calculate the expected deviations from equilibrium distributions of ionic and atomic species in the outer heliospheric interface. It clearly turns out from these studies that non-relaxated non-equilibrium distribution functions have to be expected both for O-/H-ions and atoms in this region. This has inherent implications for the diagnostics of interstellar parameters, deduced from observations made further inwards from the interface region.  相似文献   

14.
Recently, a soft blackbody component was observed in the early X-ray afterglow of GRB 060218, which was interpreted as shock breakout from the thick wind of the progenitor Wolf–Rayet (WR) star of the underlying Type Ic supernova 2006aj. In this paper, we present a simple model for computing the characteristic quantities (including energy, temperature and time duration) for the transient event from the shock breakout in Type Ibc supernovae produced by the core-collapse of WR stars surrounded by dense winds. In contrast to the case of a star without a strong wind, the shock breakout occurs in the wind region rather than inside the star, caused by the large optical depth in the wind. We find that, for the case of a WR star with a dense wind, the total energy of the radiation generated by the supernova shock breakout is larger than that in the case of the same star without a wind by a factor of >10. The temperature can be either hotter or colder, depending on the wind parameters. The time duration is larger caused by the increase in the effective radius of the star due to the presence of a thick wind. Then, we apply the model to GRB 060218/SN 2006aj. We show that, to explain both the temperature and the total energy of the blackbody component observed in GRB 060218 by the shock breakout, the progenitor WR star has to have an unrealistically large core radius (the radius at optical depth of 20), larger than 100 R. In spite of this disappointing result, our model is expected to have important applications to the observations on Type Ibc supernovae in which the detection of shock breakout will provide important clues to the progenitors of Type Ibc supernovae.  相似文献   

15.
Analytic treatments of a particle encountering a collisionless shock have commonly been based on the assumption that the shock surface is quasi-planar with length scales larger than the particle gyroradius. Within this framework, the particle distribution function width is supposed to be conserved in any shock reflection process. It is well known, however, that the thermal energy associated with backstreaming ions upstream of Earth's bow shock is significantly larger than the incident solar wind thermal energy. In a previous study, we found that non-thermal features of ions reflected quasi-adiabatically can be accounted for by considering the effect of small, normally distributed fluctuations of the shock normal over short temporal or spatial scales. The strong dependence of the particle acceleration on shock geometry leads to an increase in the temperature and to a non-thermal tail. Here, we conduct a similar analysis to investigate the effects of small, normally distributed fluctuations in the shock normal direction for specularly reflected ions. This later mechanism is considered of first importance in the dissipation process occurring at quasi-perpendicular shocks. We have derived the probability distribution functions f(v) and f(v) of ions issued from a specular reflection of incident solar wind in the presence of normal direction fluctuations. These distributions deviate weakly from a Maxwellian, in agreement with the observations. In particular, a qualitative agreement with the ion thermal energy is obtained for fluctuations of the normal orientation in the 5-8° range about the nominal direction. Also, we have found that the shock θBn has a weak effect on the shape of the distribution. While, not a strong determinant of the reflected distribution characteristics, the dynamical shock structure at ion scales cannot be ignored when accounting for the shock-accelerated particle thermal energy.  相似文献   

16.
The intensive acceleration of energetic charged particles in perpendicular shock waves which has been known to take place in the interplanetary medium has been utilized in this work in order to account for the energization of cosmic rays. It is proposed that cosmic rays can be accelerated up to 1014–1015 eV in successive perpendicular shock waves which appear inside supernova shells in our Galaxy.  相似文献   

17.
In this paper, similarity solutions for the propagation of strong-plane shock waves in optically-thin grey atmospheres are obtained in the presence of a magnetic field. Density and magnetic field are constant in the undisturbed gaseous medium in front of the shock. Planck's diffusion approximation has been taken into account in this problem and a comparative study has been made between the results of ordinary gasdynamics and magnetogasdynamics.  相似文献   

18.
Energetic particles fluxes measured by spacecraft in the heliosphere are frequently observed to peak during interplanetary shock crossings, suggesting the shock to be the source of acceleration. It has been shown that the shape of the energetic particle fluxes, upstream and downstream of the shock, is affected by energetic particle transport properties. In this study we make a comparison among a number of shock crossings observed by the ACE spacecraft, and the energetic particle fluxes derived by a test-particle numerical model in the vicinity of a planar shock. We find that observations are in good agreement with a particle density profile obtained in the simulation by assuming superdiffusive transport both upstream and downstream of the shock region.  相似文献   

19.
In the present paper, we have obtained some exact analytic self-similar solutions for a zero-temperature gradient behind a magnetogasdynamic shock wave produced by stellar explosions. The initial density of the medium is taken to vary as some power of the distance from the point of explosion. The solutions are obtained for the cases when the energy of the shocked gas is constant, the energy is varying, and the shock velocity is constant. General solutions are also obtained. We have also analytically obtained the position of the singular surface behind the shock wave.  相似文献   

20.
在柱坐标下将黑子周围的环形区域(黑子除外)内的振荡分解为朝向黑子传播的(入射的)波和离开黑子传播的(出射的)波。对无黑子的环形区域内的振荡也进行了同样的分解。将黑子周围的入射波看成是被黑子磁流管磁化了的介质(介质内的磁场基本是水平的)中的波。而无黑子区的入射波看成是非磁化介质中的波。比较这两种波在固定波数下功率随频率的分布发现,在磁化介质中不同径向除n的声波(p模)频率系统降低,同时功率也降低,降低的功率最高达非磁化介质中波的功率的30%。而比较在固定频率下功率随波数的分布发现,磁场中f模及n=1,2,3的p模的脊向高波数方向位移,功率的降低受频率调制,即声波在某些有限的频带中被吸收。这些观测表明,在磁场中p模与磁声重力波(MAG)产生了模式混合或耦合。模式混合的存在支持了模式转换作为p模式被黑子吸收的机制的解释。此外,本文还分析了转换的MAG波进入黑子磁流管(其中的磁场基本上是垂直的)后进一步被吸收,吸收的功率最高达MAG波的20%。在磁流管内没有进一步观测到模式的转换  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号